An application of upscaled optimal foraging theory using hidden Markov modelling: year-round behavioural variation in a large arctic herbivore

Author:

Beumer Larissa T.ORCID,Pohle JenniferORCID,Schmidt Niels M.ORCID,Chimienti MariannaORCID,Desforges Jean-PierreORCID,Hansen Lars H.ORCID,Langrock Roland,Pedersen Stine Højlund,Stelvig MikkelORCID,van Beest Floris M.ORCID

Abstract

Abstract Background In highly seasonal environments, animals face critical decisions regarding time allocation, diet optimisation, and habitat use. In the Arctic, the short summers are crucial for replenishing body reserves, while low food availability and increased energetic demands characterise the long winters (9–10 months). Under such extreme seasonal variability, even small deviations from optimal time allocation can markedly impact individuals’ condition, reproductive success and survival. We investigated which environmental conditions influenced daily, seasonal, and interannual variation in time allocation in high-arctic muskoxen (Ovibos moschatus) and evaluated whether results support qualitative predictions derived from upscaled optimal foraging theory. Methods Using hidden Markov models (HMMs), we inferred behavioural states (foraging, resting, relocating) from hourly positions of GPS-collared females tracked in northeast Greenland (28 muskox-years). To relate behavioural variation to environmental conditions, we considered a wide range of spatially and/or temporally explicit covariates in the HMMs. Results While we found little interannual variation, daily and seasonal time allocation varied markedly. Scheduling of daily activities was distinct throughout the year except for the period of continuous daylight. During summer, muskoxen spent about 69% of time foraging and 19% resting, without environmental constraints on foraging activity. During winter, time spent foraging decreased to 45%, whereas about 43% of time was spent resting, mediated by longer resting bouts than during summer. Conclusions Our results clearly indicate that female muskoxen follow an energy intake maximisation strategy during the arctic summer. During winter, our results were not easily reconcilable with just one dominant foraging strategy. The overall reduction in activity likely reflects higher time requirements for rumination in response to the reduction of forage quality (supporting an energy intake maximisation strategy). However, deep snow and low temperatures were apparent constraints to winter foraging, hence also suggesting attempts to conserve energy (net energy maximisation strategy). Our approach provides new insights into the year-round behavioural strategies of the largest Arctic herbivore and outlines a practical example of how to approximate qualitative predictions of upscaled optimal foraging theory using multi-year GPS tracking data.

Funder

15. Juni Fonden

Miljøstyrelsen

AUFF Starting Grant

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3