Author:
Brushett Aidan,Whittington Jesse,Macbeth Bryan,Fryxell John M.
Abstract
AbstractParturition and the early neonatal period are critical life history stages in ungulates with considerable implications for population growth and persistence. Understanding the changes in behaviour induced by ungulate parturition is important for supporting effective population management, but reliably identifying birth sites and dates presents a challenge for managers. Rocky Mountain bighorn sheep (Ovis canadensis canadensis) are one such highly valued and ecologically important species in montane and subalpine ecosystems of Western North America. In the face of changing patterns of anthropogenic land use, wildlife managers increasingly require site-specific knowledge of the movement and habitat selection characteristics of periparturient sheep to better inform land use planning initiatives and ensure adequate protections for lambing habitat. We used movement data from GPS collared parturient (n = 13) and non-parturient (n = 8) bighorn sheep in Banff National Park, Canada to (1) identify lambing events based on changes in key movement metrics, and (2) investigate how resource selection and responses to human use change during the periparturient period. We fit a hidden Markov model (HMM) to a multivariate characterization of sheep movement (step length, daily home range area, residence time) to predict realistic lambing dates for the animals in our study system. Leave-one-out cross validation of our model resulted in a 93% success rate for parturient females. Our model, which we parameterized using data from known parturient females, also predicted lambing events in 25% of known non-parturient ewes in a test dataset. Using a latent selection difference function and resource selection functions, we tested for postpartum changes in habitat use, as well as seasonal differences in habitat selection. Immediately following lambing, ewes preferentially selected high-elevation sites on solar aspects that were more rugged, closer to escape terrain, and further from roads. Within-home range habitat selection was similar between individuals in different reproductive states, but parturient ewes had stronger selection for low snow depth, sites closer to barren ground, and sites further from trails. We propose that movement-based approaches such as HMMs are a valuable tool for identifying critical parturition habitat in species with complex movement patterns and may have particular utility in study areas without access to extensive field observations or vaginal implant transmitters. Furthermore, our results suggest that managers should minimize human disturbance in lambing areas to avoid interfering with maternal behaviour and ensure access to a broad range of suitable habitat in the periparturient period.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献