A novel method for identifying fine-scale bottom-use in a benthic-foraging pinniped

Author:

Angelakis Nathan,Goldsworthy Simon D.,Connell Sean D.,Durante Leonardo M.

Abstract

Abstract Background For diving, marine predators, accelerometer and magnetometer data provides critical information on sub-surface foraging behaviours that cannot be identified from location or time-depth data. By measuring head movement and body orientation, accelerometers and magnetometers can help identify broad shifts in foraging movements, fine-scale habitat use and energy expenditure of terrestrial and marine species. Here, we use accelerometer and magnetometer data from tagged Australian sea lions and provide a new method to identify key benthic foraging areas. As Australian sea lions are listed as endangered by the IUCN and Australian legislation, identifying key areas for the species is vital to support targeted management of populations. Methods Firstly, tri-axial magnetometer and accelerometer data from adult female Australian sea lions is used in conjunction with GPS and dive data to dead-reckon their three-dimensional foraging paths. We then isolate all benthic phases from their foraging trips and calculate a range of dive metrics to characterise their bottom usage. Finally, k-means cluster analysis is used to identify core benthic areas utilised by sea lions. Backwards stepwise regressions are then iteratively performed to identify the most parsimonious model for describing bottom usage and its included predictor variables. Results Our results show distinct spatial partitioning in benthic habitat-use by Australian sea lions. This method has also identified individual differences in benthic habitat-use. Here, the application of high-resolution magnetometer/accelerometer data has helped reveal the tortuous foraging movements Australian sea lions use to exploit key benthic marine habitats and features. Conclusions This study has illustrated how magnetometer and accelerometer data can provide a fine-scale description of the underwater movement of diving species, beyond GPS and depth data alone, For endangered species like Australian sea lions, management of populations must be spatially targeted. Here, this method demonstrates a fine-scale analysis of benthic habitat-use which can help identify key areas for both marine and terrestrial species. Future integration of this method with concurrent habitat and prey data would further augment its power as a tool for understanding the foraging behaviours of species.

Funder

Nature Foundation SA

Holsworth Wildlife Research Endowment

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3