Abstract
Abstract
Background
Tri-axial accelerometers have been used to remotely describe and identify in situ behaviours of a range of animals without requiring direct observations. Datasets collected from these accelerometers (i.e. acceleration, body position) are often large, requiring development of semi-automated analyses to classify behaviours. Marine fishes exhibit many “burst” behaviours with high amplitude accelerations that are difficult to interpret and differentiate. This has constrained the development of accurate automated techniques to identify different “burst” behaviours occurring naturally, where direct observations are not possible.
Methods
We trained a random forest machine learning algorithm based on 624 h of accelerometer data from six captive yellowtail kingfish during spawning periods. We identified five distinct behaviours (swim, feed, chafe, escape, and courtship), which were used to train the model based on 58 predictive variables.
Results
Overall accuracy of the model was 94%. Classification of each behavioural class was variable; F1 scores ranged from 0.48 (chafe) – 0.99 (swim). The model was subsequently applied to accelerometer data from eight free-ranging kingfish, and all behaviour classes described from captive fish were predicted by the model to occur, including 19 events of courtship behaviours ranging from 3 s to 108 min in duration.
Conclusion
Our findings provide a novel approach of applying a supervised machine learning model on free-ranging animals, which has previously been predominantly constrained to direct observations of behaviours and not predicted from an unseen dataset. Additionally, our findings identify typically ambiguous spawning and courtship behaviours of a large pelagic fish as they naturally occur.
Funder
Holsworth Wildlife Research Endowment
Biology Society of South Australia
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference71 articles.
1. Block BA. Physiological ecology in the 21st century: advancements in biologging science. Integr Comp Biol. 2005;45:305–20.
2. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
3. Brewster L, Dale J, Guttridge T, Gruber S, Hansell A, Elliott M, Cowx I, Whitney N, Gleiss A. Development and application of a machine learning algorithm for classification of elasmobranch behaviour from accelerometry data. Mar Biol. 2018;165:62.
4. Broell F, Burnell C, Taggart CT. Measuring abnormal movements in free-swimming fish with accelerometers: implications for quantifying tag and parasite load. J Exp Biol. 2016;219:695–705.
5. Bromage N, Elliott J, Springate J, Whitehead C. The effects of constant photoperiods on the timing of spawning in the rainbow trout. Aquaculture. 1984;43:213–23.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献