Abstract
Abstract
Background
Glucocorticoids are often associated with stressful environments, but they are also thought to drive the best strategies to improve fitness in stressful environments. Glucocorticoids improve fitness in part by regulating foraging behaviours in response to daily and seasonal energy requirements. However, many studies demonstrating relationships between foraging behaviour and glucocorticoids are experimental, and few observational studies conducted under natural conditions have tested whether changing glucocorticoid levels are related to daily and seasonal changes in energy requirements.
Methods
We integrated glucocorticoids into habitat selection models to test for relationships between foraging behaviour and glucocorticoid levels in elk (Cervus canadensis) as their daily and seasonal energy requirements changed. Using integrated step selection analysis, we tested whether elevated glucocorticoid levels were related to foraging habitat selection on a daily scale and whether that relationship became stronger during lactation, one of the greatest seasonal periods of energy requirement for female mammals.
Results
We found stronger selection of foraging habitat by female elk with elevated glucocorticoids (eß = 1.44 95% CI 1.01, 2.04). We found no difference in overall glucocorticoid levels after calving, nor a significant change in the relationship between glucocorticoids and foraging habitat selection at the time of calving. However, we found a gradual increase in the relationship between glucocorticoids and habitat selection by female elk as their calves grew over the next few months (eß = 1.01, 95% CI 1.00, 1.02), suggesting a potentially stronger physiological effect of glucocorticoids for elk with increasing energy requirements.
Conclusions
We suggest glucocorticoid-integrated habitat selection models demonstrate the role of glucocorticoids in regulating foraging responses to daily and seasonal energy requirements. Ultimately, this integration will help elucidate the implications of elevated glucocorticoids under natural conditions.
Funder
NSERC PGS-D
Manitoba Fish and Wildlife Enhancement Fund
NSERC Discovery Grant
Publisher
Springer Science and Business Media LLC