Drivers of realized satellite tracking duration in marine turtles

Author:

Hart Kristen M.ORCID,Guzy Jacquelyn C.,Smith Brian J.

Abstract

Abstract Background Satellite tags have revolutionized our understanding of marine animal movements. However, tags may stop transmitting for many reasons and little research has rigorously examined tag failure. Using a long-term, large-scale, multi-species dataset, we evaluated factors influencing tracking duration of satellite tags to inform study design for future tracking studies. Methods We leveraged data on battery status transmitted with location data, recapture events, and number of transmission days to probabilistically quantify multiple potential causes of failure (i.e., battery failure, premature detachment, and tag damage/fouling). We used a combination of logistic regressions and an ordinary linear model including several predictor variables (i.e., tag type, battery life, species, sex, size, and foraging region). Results We examined subsets of data from 360 satellite tags encompassing 86,889 tracking days deployed on four species of marine turtles throughout the Gulf of Mexico, Caribbean, and Bahamas from 2008 to 2019. Only 4.1% of batteries died before failure due to other causes. We observed species-specific variation in how long tags remain attached: hawksbills retained 50% of their tags for 1649 days (95% CI 995–1800), loggerheads for 584 days (95% CI 400–690), and green turtles for 294 days (95% CI 198–450). Estimated tracking duration varied by foraging region (Caribbean: 385 days; Bahamas: 356; southern Gulf of Mexico [SGOM]: 276, northern Gulf of Mexico [NGOM]: 177). Additionally, we documented species-specific variation in estimated tracking duration among foraging regions. Based on sensor data, within the Gulf of Mexico, across species, we estimated that 50% of tags began to foul after 83 95% CI (70–120) days. Conclusions The main factor that limited tracking duration was tag damage (i.e., fouling and/or antenna breakage). Turtles that spent most of their time in the Gulf of Mexico had shorter tracking durations than those in the Bahamas and Caribbean, with shortest durations observed in the NGOM. Additionally, tracking duration varied by species, likely as a result of behaviors that damage tags. This information will help researchers, tag companies, permitting agencies, and funders better predict expected tracking durations, improving study designs for imperiled marine turtles. Our results highlight the heterogeneity in telemetry device longevity, and we provide a framework for researchers to evaluate telemetry devices with respect to their study objectives.

Funder

USGS

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3