Combining accelerometry with allometry for estimating daily energy expenditure in joules when in-lab calibration is unavailable

Author:

Chakravarty Pritish,Cozzi Gabriele,Scantlebury David Michael,Ozgul Arpat,Aminian Kamiar

Abstract

Abstract Background All behaviour requires energy, and measuring energy expenditure in standard units (joules) is key to linking behaviour to ecological processes. Animal-borne accelerometers are commonly used to infer proxies of energy expenditure, termed ‘dynamic body acceleration’ (DBA). However, converting acceleration proxies (m/s2) to standard units (watts) involves costly in-lab respirometry measurements, and there is a lack of viable substitutes for empirical calibration relationships when these are unavailable. Methods We used past allometric work quantifying energy expenditure during resting and locomotion as a function of body mass to calibrate DBA. We used the resulting ‘power calibration equation’ to estimate daily energy expenditure (DEE) using two models: (1) locomotion data-based linear calibration applied to the waking period, and Kleiber’s law applied to the sleeping period (ACTIWAKE), and (2) locomotion and resting data-based linear calibration applied to the 24-h period (ACTIREST24). Since both models require locomotion speed information, we developed an algorithm to estimate speed from accelerometer, gyroscope, and behavioural annotation data. We applied these methods to estimate DEE in free-ranging meerkats (Suricata suricatta), and compared model estimates with published DEE measurements made using doubly labelled water (DLW) on the same meerkat population. Results ACTIWAKE’s DEE estimates did not differ significantly from DLW (t(19) = − 1.25; P = 0.22), while ACTIREST24’s estimates did (t(19) = − 2.38; P = 0.028). Both models underestimated DEE compared to DLW: ACTIWAKE by 14% and ACTIREST by 26%. The inter-individual spread in model estimates of DEE (s.d. 1–2% of mean) was lower than that in DLW (s.d. 33% of mean). Conclusions We found that linear locomotion-based calibration applied to the waking period, and a ‘flat’ resting metabolic rate applied to the sleeping period can provide realistic joule estimates of DEE in terrestrial mammals. The underestimation and lower spread in model estimates compared to DLW likely arise because the accelerometer only captures movement-related energy expenditure, whereas DLW is an integrated measure. Our study offers new tools to incorporate body mass (through allometry), and changes in behavioural time budgets and intra-behaviour changes in intensity (through DBA) in acceleration-based field assessments of daily energy expenditure.

Funder

Forschungskredit, Universität Zürich

Swiss National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3