Foraging behaviour of a continental shelf marine predator, the grey seal (Halichoerus grypus), is associated with in situ, subsurface oceanographic conditions

Author:

Nowak B. V. R.ORCID,Bowen W. D.,Whoriskey K.,Lidgard D. C.,Mills Flemming J. E.,Iverson S. J.

Abstract

Abstract Background The heterogeneous oceanographic conditions of continental shelf ecosystems result in a three-dimensionally patchy distribution of prey available to upper-trophic level predators. The association of bio-physical conditions with movement patterns of large marine predators has been demonstrated in diverse taxa. However, obtaining subsurface data that are spatio-temporally relevant to the decisions made by benthically-foraging species can be challenging. Methods Between 2009 and 2015, grey seals were captured on Sable Island, Nova Scotia, Canada during summer and fall and instrumented with high-resolution archival GPS tags. These tags recorded location data as well as depth (m), temperature (°C), and light level measurements during dives, until animals returned to the haulout site to breed. Hidden Markov models were used to predict apparent foraging along movement tracks for 79 individuals (59 females, 20 males) every 3 h. In situ measurements were used to estimate chlorophyll-a concentration (mg m− 3) and temperature within the upper-water column (50 m) and temperature and depth at the bottom of dives. As chlorophyll-a could only be estimated from 10:00 to 14:00 AST for dive depths ≥50 m, we formulated two generalized linear mixed-effects models to test the association of predicted grey seal behavioural states with oceanographic conditions and phytoplankton biomass: the first representing conditions of the upper-water column likely to influence primary productivity, and a second model including environmental conditions encountered by grey seals at the bottom of dives, when seals were more likely to be foraging. Results Predicted grey seal behavioural states were associated with fine-scale chlorophyll-a concentrations and other environmental conditions they encountered across the continental shelf. In the Water Column Model, season had no influence on the probability of observing apparent foraging, but chlorophyll-a, upper-water column temperature, and sex did, with females having a greater probability of foraging than males. In the Bottom Conditions Model, again season had no influence on the probability of apparent foraging, but females were over twice as likely as males to be foraging. Conclusions The results of this study highlight the value of in situ measurements of oceanographic properties that can be collected at high temporal resolution by animal-borne data loggers. These data provide insight into how inferred behavioural decisions made by large marine predators, such as the grey seal, may be influenced by fine-scale oceanographic conditions.

Funder

Natural Sciences and Engineering Research Council (NSERC) of Canada

Canadian Foundation for Innovation

Fisheries and Oceans Canada

Nova Scotia Graduate Scholarship

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3