Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study

Author:

Alingh J. F.ORCID,Groen B. E.,Kamphuis J. F.,Geurts A. C. H.,Weerdesteyn V.

Abstract

Abstract Background After stroke, some individuals have latent, propulsive capacity of the paretic leg, that can be elicited during task-specific gait training. The aim of this proof-of-concept study was to investigate the effect of five-week robotic gait training for improving propulsion symmetry by increasing paretic propulsion in chronic stroke survivors. Methods Twenty-nine individuals with chronic stroke and impaired paretic propulsion (≥ 8% difference in paretic vs. non-paretic propulsive impulse) were enrolled. Participants received ten 60-min sessions of individual robotic gait training targeting paretic propulsion (five weeks, twice a week), complemented with home exercises (15 min/day) focusing on increasing strength and practicing learned strategies in daily life. Propulsion measures, gait kinematics and kinetics, self-selected gait speed, performance of functional gait tasks, and daily-life mobility and physical activity were assessed five weeks (T0) and one week (T1) before the start of intervention, and one week (T2) and five weeks (T3) after the intervention period. Results Between T0 and T1, no significant differences in outcomes were observed, except for a marginal increase in gait speed (+ 2.9%). Following the intervention, propulsion symmetry (+ 7.9%) and paretic propulsive impulse had significantly improved (+ 8.1%), whereas non-paretic propulsive impulse remained unchanged. Larger gains in propulsion symmetry were associated with more asymmetrical propulsion at T0. In addition, following the intervention significantly greater paretic trailing limb angles (+ 6.6%) and ankle plantarflexion moments (+ 7.1%) were observed. Furthermore, gait speed (+ 7.2%), 6-Minute Walk Test (+ 6.4%), Functional Gait Assessment (+ 6.5%), and daily-life walking intensity (+ 6.9%) had increased following the intervention. At five-week follow-up (T3), gains in all outcomes were retained, and gait speed had further increased (+ 3.6%). Conclusions The post-intervention gain in paretic propulsion did not only translate into improved propulsion symmetry and gait speed, but also pertained to performance of functional gait tasks and daily-life walking activity levels. These findings suggest that well-selected chronic stroke survivors may benefit from task-specific targeted training to utilize the residual propulsive capacity of the paretic leg. Future research is recommended to establish simple baseline measures for identification of individuals who may benefit from such training and confirm benefits of the used training concepts in a randomized controlled trial. Trial registration: Registry number ClinicalTrials.gov (www.clinicaltrials.gov): NCT04650802, retrospectively registered 3 December 2020.

Funder

Revalidatiefonds

Stichting Revalidatiegeneeskunde en Wetenschap

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3