Author:
Cai Siqi,Wei Xuyang,Su Enze,Wu Weifeng,Zheng Haiqing,Xie Longhan
Abstract
Abstract
Background
Compensations are commonly observed in patients with stroke when they engage in reaching without supervision; these behaviors may be detrimental to long-term functional improvement. Automatic detection and reduction of compensation cab help patients perform tasks correctly and promote better upper extremity recovery.
Objective
Our first objective is to verify the feasibility of detecting compensation online using machine learning methods and pressure distribution data. Second objective was to investigate whether compensations of stroke survivors can be reduced by audiovisual or force feedback. The third objective was to compare the effectiveness of audiovisual and force feedback in reducing compensation.
Methods
Eight patients with stroke performed reaching tasks while pressure distribution data were recorded. Both the offline and online recognition accuracy were investigated to assess the feasibility of applying a support vector machine (SVM) based compensation detection system. During reduction of compensation, audiovisual feedback was delivered using virtual reality technology, and force feedback was delivered through a rehabilitation robot.
Results
Good classification performance was obtained in online compensation recognition, with an average F1-score of over 0.95. Based on accurate online detection, real-time feedback significantly decreased compensations of patients with stroke in comparison with no-feedback condition (p < 0.001). Meanwhile, the difference between audiovisual and force feedback was also significant (p < 0.001) and force feedback was more effective in reducing compensation in patients with stroke.
Conclusions
Accurate online recognition validated the feasibility of monitoring compensations using machine learning algorithms and pressure distribution data. Reliable online detection also paved the way for reducing compensations by providing feedback to patients with stroke. Our findings suggested that real-time feedback could be an effective approach to reducing compensatory patterns and force feedback demonstrated a more enviable potential compared with audiovisual feedback.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference52 articles.
1. Campbell BCV, Meretoja A, Donnan GA, Davis SM. Twenty-Year History of the Evolution of Stroke Thrombolysis With Intravenous Alteplase to Reduce Long-Term Disability. Stroke. 46:2341–6.
2. Members WG, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Executive Summary: Heart Disease and Stroke Statistics--2016 Update: A Report From the American Heart Association. 2016;127:143–52.
3. Farr TD, Whishaw IQ. Quantitative and qualitative impairments in skilled reaching in the mouse (Mus musculus) after a focal motor cortex stroke. Stroke. 2002;33:1869–75.
4. Newell KM. Motor skill acquisition. Annu Rev Psychol. 1991;42:213–37.
5. Cirstea M, Levin MF. Compensatory strategies for reaching in stroke. Brain. 2000;123:940–53.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献