Author:
Hsu Hsiu-Yun,Koh Chia-Lin,Yang Kang-Chin,Lin Yu-Ching,Hsu Chieh-Hsiang,Su Fong-Chin,Kuo Li-Chieh
Abstract
Abstract
Background
The original version of the Tenodesis-Induced-Grip Exoskeleton Robot (TIGER) significantly improved the motor and functional performance of the affected upper extremity of chronic stroke patients. The assist-as-needed (AAN) technique in robot-involved therapy is widely favored for promoting patient active involvement, thereby fostering motor recovery. However, the TIGER lacked an AAN control strategy, which limited its use in different clinical applications. The present study aimed to develop and analyze the training effects of an AAN control mode to be integrated into the TIGER, to analyze the impact of baseline patient characteristics and training paradigms on outcomes for individuals with chronic stroke and to compare training effects on the upper limb function between using the AAN-equipped TIGER and using the original prototype.
Methods
This was a single-arm prospective interventional study which was conducted at a university hospital. In addition to 20 min of regular task-specific motor training, each participant completed a 20-min robotic training program consisting of 10 min in the AAN control mode and 10 min in the functional mode. The training sessions took place twice a week for 9 weeks. The primary outcome was the change score of the Fugl–Meyer Assessment of the Upper Extremity (FMA-UE), and the secondary outcomes were the change score of the Box and Blocks Test (BBT), the amount of use (AOU) and quality of movement (QOM) scales of the Motor Activity Log (MAL), the Semmes–Weinstein Monofilament (SWM) test, and the Modified Ashworth Scale (MAS) for fingers and wrist joints. The Generalized Estimating Equations (GEE) and stepwise regression model were used as the statistical analysis methods.
Results
Sixteen chronic stroke patients completed all steps of the study. The time from stroke onset to entry into the trial was 21.7 ± 18.9 months. After completing the training with the AAN-equipped TIGER, they exhibited significant improvements in movement reflected in their total score (pre/post values were 34.6 ± 11.5/38.5 ± 13.4) and all their sub-scores (pre/post values were 21.5 ± 6.0/23.3 ± 6.5, 9.5 ± 6.2/11.3 ± 7.2, and 3.6 ± 1.0/3.9 ± 1.0 for the shoulder, elbow, and forearm sub-category, the wrist and hand sub-category, and the coordination sub-category, respectively) on the FMA-UE (GEE, p < 0.05), as well as their scores on the BBT (pre/post values were 5.9 ± 6.5/9.5 ± 10.1; GEE, p = 0.004) and the AOU (pre/post values were 0.35 ± 0.50/0.48 ± 0.65; GEE, p = 0.02). However, the original TIGER exhibited greater improvements in their performance on the FMA-UE than the participants training with the AAN-equipped TIGER (GEE, p = 0.008). The baseline score for the wrist and hand sub-category of the FMA-UE was clearly the best predictor of TIGER-mediated improvements in hand function during the post-treatment assessment (adjusted R2 = 0.282, p = 0.001).
Conclusions
This study developed an AAN-equipped TIGER system and demonstrated its potential effects on improving both the function and activity level of the affected upper extremity of patients with stroke. Nevertheless, its training effects were not found to be advantageous to the original prototype. The baseline score for the FMA-UE sub-category of wrist and hand was the best predictor of improvements in hand function after TIGER rehabilitation.
Clinical trial registration ClinicalTrials.gov, identifier NCT03713476; date of registration: October19, 2018. https://clinicaltrials.gov/ct2/show/NCT03713476
Funder
National Science and Technology Council of TAIWAN
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献