Under pressure: design and validation of a pressure-sensitive insole for ankle plantar flexion biofeedback during neuromuscular gait training

Author:

Conner Benjamin C.,Fang Ying,Lerner Zachary F.

Abstract

Abstract Background Electromyography (EMG)-based audiovisual biofeedback systems, developed and tested in research settings to train neuromuscular control in patient populations such as cerebral palsy (CP), have inherent implementation obstacles that may limit their translation to clinical practice. The purpose of this study was to design and validate an alternative, plantar pressure-based biofeedback system for improving ankle plantar flexor recruitment during walking in individuals with CP. Methods Eight individuals with CP (11–18 years old) were recruited to test both an EMG-based and a plantar pressure-based biofeedback system while walking. Ankle plantar flexor muscle recruitment, co-contraction at the ankle, and lower limb kinematics were compared between the two systems and relative to baseline walking. Results Relative to baseline walking, both biofeedback systems yielded significant increases in mean soleus (43–58%, p < 0.05), and mean (68–70%, p < 0.05) and peak (71–82%, p < 0.05) medial gastrocnemius activation, with no differences between the two systems and strong relationships for all primary outcome variables (R = 0.89–0.94). Ankle co-contraction significantly increased relative to baseline only with the EMG-based system (52%, p = 0.03). Conclusion These findings support future research on functional training with this simple, low-cost biofeedback modality.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3