Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support

Author:

Özen ÖzhanORCID,Buetler Karin A.,Marchal-Crespo Laura

Abstract

Abstract Background Current robot-aided training allows for high-intensity training but might hamper the transfer of learned skills to real daily tasks. Many of these tasks, e.g., carrying a cup of coffee, require manipulating objects with complex dynamics. Thus, the absence of somatosensory information regarding the interaction with virtual objects during robot-aided training might be limiting the potential benefits of robotic training on motor (re)learning. We hypothesize that providing somatosensory information through the haptic rendering of virtual environments might enhance motor learning and skill transfer. Furthermore, the inclusion of haptic rendering might increase the task realism, enhancing participants’ agency and motivation. Providing arm weight support during training might also enhance learning by limiting participants’ fatigue. Methods We conducted a study with 40 healthy participants to evaluate how haptic rendering and arm weight support affect motor learning and skill transfer of a dynamic task. The task consisted of inverting a virtual pendulum whose dynamics were haptically rendered on an exoskeleton robot designed for upper limb neurorehabilitation. Participants trained with or without haptic rendering and with or without weight support. Participants’ task performance, movement strategy, effort, motivation, and agency were evaluated during baseline, short- and long-term retention. We also evaluated if the skills acquired during training transferred to a similar task with a shorter pendulum. Results We found that haptic rendering significantly increases participants’ movement variability during training and the ability to synchronize their movements with the pendulum, which is correlated with better performance. Weight support also enhances participants’ movement variability during training and reduces participants’ physical effort. Importantly, we found that training with haptic rendering enhances motor learning and skill transfer, while training with weight support hampers learning compared to training without weight support. We did not observe any significant differences between training modalities regarding agency and motivation during training and retention tests. Conclusion Haptic rendering is a promising tool to boost robot-aided motor learning and skill transfer to tasks with similar dynamics. However, further work is needed to find how to simultaneously provide robotic assistance and haptic rendering without hampering motor learning, especially in brain-injured patients. Trial registrationhttps://clinicaltrials.gov/show/NCT04759976

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3