Long short-term memory (LSTM) recurrent neural network for muscle activity detection

Author:

Ghislieri MarcoORCID,Cerone Giacinto Luigi,Knaflitz Marco,Agostini Valentina

Abstract

Abstract Background The accurate temporal analysis of muscle activation is of great interest in many research areas, spanning from neurorobotic systems to the assessment of altered locomotion patterns in orthopedic and neurological patients and the monitoring of their motor rehabilitation. The performance of the existing muscle activity detectors is strongly affected by both the SNR of the surface electromyography (sEMG) signals and the set of features used to detect the activation intervals. This work aims at introducing and validating a powerful approach to detect muscle activation intervals from sEMG signals, based on long short-term memory (LSTM) recurrent neural networks. Methods First, the applicability of the proposed LSTM-based muscle activity detector (LSTM-MAD) is studied through simulated sEMG signals, comparing the LSTM-MAD performance against other two widely used approaches, i.e., the standard approach based on Teager–Kaiser Energy Operator (TKEO) and the traditional approach, used in clinical gait analysis, based on a double-threshold statistical detector (Stat). Second, the effect of the Signal-to-Noise Ratio (SNR) on the performance of the LSTM-MAD is assessed considering simulated signals with nine different SNR values. Finally, the newly introduced approach is validated on real sEMG signals, acquired during both physiological and pathological gait. Electromyography recordings from a total of 20 subjects (8 healthy individuals, 6 orthopedic patients, and 6 neurological patients) were included in the analysis. Results The proposed algorithm overcomes the main limitations of the other tested approaches and it works directly on sEMG signals, without the need for background-noise and SNR estimation (as in Stat). Results demonstrate that LSTM-MAD outperforms the other approaches, revealing higher values of F1-score (F1-score > 0.91) and Jaccard similarity index (Jaccard > 0.85), and lower values of onset/offset bias (average absolute bias < 6 ms), both on simulated and real sEMG signals. Moreover, the advantages of using the LSTM-MAD algorithm are particularly evident for signals featuring a low to medium SNR. Conclusions The presented approach LSTM-MAD revealed excellent performances against TKEO and Stat. The validation carried out both on simulated and real signals, considering normal as well as pathological motor function during locomotion, demonstrated that it can be considered a powerful tool in the accurate and effective recognition/distinction of muscle activity from background noise in sEMG signals.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3