Relying on more sense for enhancing lower limb prostheses control: a review

Author:

Tschiedel MichaelORCID,Russold Michael Friedrich,Kaniusas Eugenijus

Abstract

AbstractModern lower limb prostheses have the capability to replace missing body parts and improve the patients’ quality of life. However, missing environmental information often makes a seamless adaptation to transitions between different forms of locomotion challenging. The aim of this review is to identify the progress made in this area over the last decade, addressing two main questions: which types of novel sensors for environmental awareness are used in lower limb prostheses, and how do they enhance device control towards more comfort and safety. A literature search was conducted on two Internet databases, PubMed and IEEE Xplore. Based on the criteria for inclusion and exclusion, 32 papers were selected for the review analysis, 18 of those are related to explicit environmental sensing and 14 to implicit environmental sensing. Characteristics were discussed with a focus on update rate and resolution as well as on computing power and energy consumption. Our analysis identified numerous state-of-the-art sensors, some of which are able to “look through” clothing or cosmetic covers. Five control categories were identified, how “next generation prostheses” could be extended. There is a clear tendency towards more upcoming object or terrain prediction concepts using all types of distance and depth-based sensors. Other advanced strategies, such as bilateral gait segmentation from unilateral sensors, could also play an important role in movement-dependent control applications. The studies demonstrated promising accuracy in well-controlled laboratory settings, but it is unclear how the systems will perform in real-world environments, both indoors and outdoors. At the moment the main limitation proves to be the necessity of having an unobstructed field of view.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3