Soft robotic exosuit augmented high intensity gait training on stroke survivors: a pilot study

Author:

Shin Sung Yul,Hohl Kristen,Giffhorn Matt,Awad Louis N.,Walsh Conor J.,Jayaraman Arun

Abstract

Abstract Background Stroke is a leading cause of serious gait impairments and restoring walking ability is a major goal of physical therapy interventions. Soft robotic exosuits are portable, lightweight, and unobtrusive assistive devices designed to improve the mobility of post-stroke individuals through facilitation of more natural paretic limb function during walking training. However, it is unknown whether long-term gait training using soft robotic exosuits will clinically impact gait function and quality of movement post-stroke. Objective The objective of this pilot study was to examine the therapeutic effects of soft robotic exosuit-augmented gait training on clinical and biomechanical gait outcomes in chronic post-stroke individuals. Methods Five post-stroke individuals received high intensity gait training augmented with a soft robotic exosuit, delivered in 18 sessions over 6–8 weeks. Performance based clinical outcomes and biomechanical gait quality parameters were measured at baseline, midpoint, and completion. Results Clinically meaningful improvements were observed in walking speed ($$p$$ p  < 0.05) and endurance ($$p$$ p  < 0.01) together with other traditional gait related outcomes. The gait quality measures including hip ($$p$$ p  < 0.01) and knee ($$p$$ p  < 0.05) flexion/extension exhibited an increase in range of motion in a symmetric manner ($$p$$ p  < 0.05). We also observed an increase in bilateral ankle angular velocities ($$p$$ p  < 0.05), suggesting biomechanical improvements in walking function. Conclusions The results in this study offer preliminary evidence that a soft robotic exosuit can be a useful tool to augment high intensity gait training in a clinical setting. This study justifies more expanded research on soft exosuit technology with a larger post-stroke population for more reliable generalization. Trial registration This study is registered with ClinicalTrials.gov (ID: NCT04251091)

Funder

Max Nader Center for Rehabilitation Technologies and Outcomes Research

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3