Deep learning model for classifying shoulder pain rehabilitation exercises using IMU sensor

Author:

Lee Kyuwon,Kim Jeong-Hyun,Hong Hyeon,Jeong Yeji,Ryu Hokyoung,Kim Hyundo,Lee Shi-Uk

Abstract

Abstract Background Artificial intelligence is being used for rehabilitation, including monitoring exercise compliance through sensor technology. AI classification of shoulder exercise wearing an IMU sensor has only been reported in normal (i.e. painless) subjects. To prove the feasibility of monitoring exercise compliance, we aimed to classify 11 types of shoulder rehabilitation exercises using an AI (artificial intelligence) algorithm in patients with shoulder pain. We had the patients wear an IMU-based sensor, collected data during exercise, and determined the accuracy of exercise classification. Methods Data were collected from 58 patients (27 males, 31 females, age range 37–82 years) diagnosed with shoulder diseases such as adhesive capsulitis and rotator cuff disease. 11 types of shoulder pain rehabilitation exercise programs were developed and repeated each exercise ten times per session while wearing an IMU sensor. The study applied the Rectified Linear Unit (ReLU) and the SoftMax as the activation function for hidden layers, the output layer. Results The acquired data was used to train a DNN model using the multilayer perceptron algorithm. The trained model was used to classify 11 types of shoulder pain rehabilitation exercises. The training accuracy was 0.975 and the test accuracy was 0.925. Conclusion The study demonstrates that IMU sensor data can effectively classify shoulder pain rehabilitation exercises, providing more appropriate feedback for patients. The model can be utilized to establish a system for remotely monitoring patients’ exercise performance. The use of deep learning in patient monitoring and rehabilitation has significant potential to bring innovative changes to healthcare service delivery.

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. Burbank KM, et al. Chronic shoulder pain: part I. evaluation and diagnosis. Am Family Phys. 2008;77(4):453–60.

2. Greenberg DL. Evaluation, and treatment of shoulder pain. Med Clin. 2014;98(3):487–504.

3. Garving C, et al. Impingement syndrome of the shoulder. Deutsches Ärzteblatt International. 2017;114(45):765.

4. Marinko LN, et al. The effectiveness of therapeutic exercise for painful shoulder conditions: a meta-analysis. J Shoulder Elbow Surg. 2011;20(8):1351–9.

5. Desmeules F, Côté CH, Frémont P. Therapeutic exercise and orthopedic manual therapy for impingement syndrome: a systematic review. Clin J Sports Med. 2003;13(3):176–82.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3