Muscle contributions to pre-swing biomechanical tasks influence swing leg mechanics in individuals post-stroke during walking

Author:

Brough Lydia G.,Kautz Steven A.ORCID,Neptune Richard R.ORCID

Abstract

Abstract Background Successful walking requires the execution of the pre-swing biomechanical tasks of body propulsion and leg swing initiation, which are often impaired post-stroke. While excess rectus femoris activity during swing is often associated with low knee flexion, previous work has suggested that deficits in propulsion and leg swing initiation may also contribute. The purpose of this study was to determine underlying causes of propulsion, leg swing initiation and knee flexion deficits in pre-swing and their link to stiff knee gait in individuals post-stroke. Methods Musculoskeletal models and forward dynamic simulations were developed for individuals post-stroke (n = 15) and healthy participants (n = 5). Linear regressions were used to evaluate the relationships between peak knee flexion, braking and propulsion symmetry, and individual muscle contributions to braking, propulsion, knee flexion in pre-swing, and leg swing initiation. Results Four out of fifteen of individuals post-stroke had higher plantarflexor contributions to propulsion and seven out of fifteen had higher vasti contributions to braking on their paretic leg relative to their nonparetic leg. Higher gastrocnemius contributions to propulsion predicted paretic propulsion symmetry (p = 0.005) while soleus contributions did not. Higher vasti contributions to braking in pre-swing predicted lower knee flexion (p = 0.022). The rectus femoris had minimal contributions to lower knee flexion acceleration in pre-swing compared to contributions from the vasti. However, for some individuals with low knee flexion, during pre-swing the rectus femoris absorbed more power and the iliopsoas contributed less power to the paretic leg. Total musculotendon work done on the paretic leg in pre-swing did not predict knee flexion during swing. Conclusions These results emphasize the multiple causes of propulsion asymmetry in individuals post-stroke, including low plantarflexor contributions to propulsion, increased vasti contributions to braking and reliance on compensatory mechanisms. The results also show that the rectus femoris is not a major contributor to knee flexion in pre-swing, but absorbs more power from the paretic leg in pre-swing in some individuals with stiff knee gait. These results highlight the need to identify individual causes of propulsion and knee flexion deficits to design more effective rehabilitation strategies.

Funder

National Institutes of Health

U.S. Department of Veterans Affairs

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3