Author:
Habashi Ahmed G.,Azab Ahmed M.,Eldawlatly Seif,Aly Gamal M.
Abstract
AbstractElectroencephalogram (EEG) signals have been utilized in a variety of medical as well as engineering applications. However, one of the challenges associated with recording EEG data is the difficulty of recording large amounts of data. Consequently, data augmentation is a potential solution to overcome this challenge in which the objective is to increase the amount of data. Inspired by the success of Generative Adversarial Networks (GANs) in image processing applications, generating artificial EEG data from the limited recorded data using GANs has seen recent success. This article provides an overview of various techniques and approaches of GANs for augmenting EEG signals. We focus on the utility of GANs in different applications including Brain-Computer Interface (BCI) paradigms such as motor imagery and P300-based systems, in addition to emotion recognition, epileptic seizures detection and prediction, and various other applications. We address in this article how GANs have been used in each study, the impact of using GANs on the model performance, the limitations of each algorithm, and future possibilities for developing new algorithms. We emphasize the utility of GANs in augmenting the limited EEG data typically available in the studied applications.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献