TWIICE One powered exoskeleton: effect of design improvements on usability in daily life as measured by the performance in the CYBATHLON race

Author:

Vouga TristanORCID,Fasola Jemina,Baud Romain,Manzoori Ali Reza,Pache Julien,Bouri Mohamed

Abstract

Abstract Background Spinal cord injury leading to paraplegia affects the mobility and physiological well-being of one in a thousand people. Powered exoskeletons can temporarily restore the ability to walk. Their relevance in daily life is still limited because of low performance beyond ground that is even. CYBATHLON is an international competition promoting improvements in assistive technology. In this article, we present the latest design and results of testing of TWIICE One version 2018, one of the competing devices in the 2020 race. Methods A person with a motor-complete spinal cord injury at thoracic level T10 participated as race pilot. Training ahead of the race took place over one week at a rate of 2 h per day. The time to perform each of the seven tasks of the competition was recorded together with the number of repetitions. Performance is compared over the training period and against the 2016 race results. Results Progression was observed in all tasks and accounted for by both user training and technology improvements. Final competition rank was second out of seven participating teams, with a record time of 4′40". This represents an average improvement of 40% with respect to comparable obstacles of the 2016 race, explaining the two ranks of improvement since then. Conclusion These results help understand which features had a positive impact on the real-life performance of the device. Understanding how design affects performance is key information to create devices that really improve the life of people living with paraplegia.

Funder

Sonceboz SA

Swiss National Center for Competence in Research Robotics

EPFL Innogrant program

Fischer connector

Bâloise Group

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinematic Analysis of Lower Limb Exoskeleton;2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI);2023-10-19

2. 脊髄損傷者用動力付外骨格型機器のプロトタイプ開発;Journal of Occupational Safety and Health;2023-09-30

3. INSPIIRE – A Modular and Passive Exoskeleton to Investigate Human Walking and Balance;2023 International Conference on Rehabilitation Robotics (ICORR);2023-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3