Author:
Fromme Nicolas Philip,Camenzind Martin,Riener Robert,Rossi René M.
Abstract
Abstract
Background
Tremor is the most common movement disorder with the highest prevalence in the upper limbs. The mechanical suppression of involuntary movements is an alternative and additional treatment to medication or surgery. Here we present a new, soft, lightweight, task asjustable and passive orthosis for tremor suppression.
Methods
A new concept of a manual, textile-based, passive orthosis was designed with an integrated, task adjustable, air-filled structure, which can easily be inflated or deflated on-demand for a certain daily activity. The air-filled structure is placed on the dorsal side of the wrist and gets bent and compressed by movements when inflated. In a constant volume air-filled structure, air pressure increases while it is inflating, creating a counterforce to the compression caused by bending. We characterised the air-filled structure stiffness by measuring the reaction torque as a function of the angle of deflection on a test bench. Furthermore, we evaluated the efficacy of the developed passive soft orthosis by analysing the suppression of involuntary movements in the wrist of a tremor-affected patient during different activities of daily living (i.e. by calculating the power spectral densities of acceleration).
Results
By putting special emphasis on the comfort and wearability of the orthosis, we achieved a lightweight design (33 g). The measurements of the angular deflection and resulting reaction torques show non-linear, hysteretic, behaviour, as well as linear behaviour with a coefficient of determination (R2) between 0.95 and 0.99. Furthermore, we demonstrated that the soft orthosis significantly reduces tremor power for daily living activities, such as drinking from a cup, pouring water and drawing a spiral, by 74 to 82% (p = 0.03); confirmed by subjective tremor-reducing perception by the patient.
Conclusion
The orthosis we developed is a lightweight and unobtrusive assistive technology, which suppresses involuntary movements and shows high wearability properties, with the potential to be comfortable. This air-structure technology could also be applied to other movement disorders, like spasticity, or even be integrated into future exoskeletons and exosuits for the implementation of variable stiffness in the systems.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference58 articles.
1. Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on tremor. Mov Disord. 1998;13(S3):2–23.
2. Elble R, Bain P, João Forjaz M, Haubenberger D, Testa C, Goetz CG, et al. Task force report: scales for screening and evaluating tremor: critique and recommendations. Mov Disord. 2013;28(13):1793–800.
3. Elble R, Deuschl G. Milestones in tremor research. Mov Disord. 2011;26(6):1096–105.
4. Ellrichmann G. Vorkommen und Wertigkeit von Oberfrequenzen in der 24-Stunden-Elektromyographie und Accelerometrie. Doctoral dissertation: Ruhr University Bochum; 2007.
5. Raethjen J, Lindemann M, Schmajohann H, Wenzelburger R, Pfister G, Deuschl G. Multiple oscillators are causing parkinsonian and essential tremor. Mov Disord. 2000;15(1):84–94.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献