Author:
Zbinden Jan,Lendaro Eva,Ortiz-Catalan Max
Abstract
AbstractThe concept of embodiment has gained widespread popularity within prosthetics research. Embodiment has been claimed to be an indicator of the efficacy of sensory feedback and control strategies. Moreover, it has even been claimed to be necessary for prosthesis acceptance, albeit unfoundedly. Despite the popularity of the term, an actual consensus on how prosthetic embodiment should be used in an experimental framework has yet to be reached. The lack of consensus is in part due to terminological ambiguity and the lack of an exact definition of prosthetic embodiment itself. In a review published parallel to this article, we summarized the definitions of embodiment used in prosthetics literature and concluded that treating prosthetic embodiment as a combination of ownership and agency allows for embodiment to be quantified, and thus useful in translational research. Here, we review the potential mechanisms that give rise to ownership and agency considering temporal, spatial, and anatomical constraints. We then use this to propose a multi-dimensional framework where prosthetic embodiment arises within a spectrum dependent on the integration of volition and multi-sensory information as demanded by the degree of interaction with the environment. This framework allows for the different experimental paradigms on sensory feedback and prosthetic control to be placed in a common perspective. By considering that embodiment lays along a spectrum tied to the interactions with the environment, one can conclude that the embodiment of prosthetic devices should be assessed while operating in environments as close to daily life as possible for it to become relevant.
Funder
Stiftelsen Promobilia
IngaBritt och Arne Lundbergs Forskningsstiftelse
Vetenskapsrådet
Chalmers University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference115 articles.
1. Graczyk EL, Resnik L, Schiefer MA, Schmitt MS, Tyler DJ. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci Rep. 2018;8(1):1–17. https://doi.org/10.1038/s41598-018-26952-x.
2. Page DM, George JA, Kluger DT, Duncan C, Wendelken S, Davis T, et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front Hum Neurosci. 2018;12(September):1–16.
3. Rognini G, Petrini FM, Raspopovic S, Valle G, Granata G, Strauss I, et al. Multisensory bionic limb to achieve prosthesis embodiment and reduce distorted phantom limb perceptions. J Neurol Neurosurg Psychiatry. 2019;90(7):833–6.
4. D’Anna E, Valle G, Mazzoni A, Strauss I, Iberite F, Patton J, et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci Robot. 2019;4(27):1–21.
5. Bekrater-Bodmann R. Factors associated with prosthesis embodiment and its importance for prosthetic satisfaction in lower limb amputees. Front Neurorobot. 2021;14(January):1–14.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献