A novel use of inertial sensors to measure the craniocervical flexion range of motion associated to the craniocervical flexion test: an observational study

Author:

Pérez-Fernández Tomás,Armijo-Olivo Susan,Liébana Sonia,de la Torre Ortíz Pablo José,Fernández-Carnero Josué,Raya Rafael,Martín-Pintado-Zugasti AitorORCID

Abstract

Abstract Background The craniocervical flexion test (CCFT) is recommended when examining patients with neck pain related conditions and as a deep cervical retraining exercise option. During the execution of the CCFT the examiner should visually assess that the amount of craniocervical flexion range of motion (ROM) progressively increases. However, this task is very subjective. The use of inertial wearable sensors may be a user-friendly option to measure and objectively monitor the ROM. The objectives of our study were (1) to measure craniocervical flexion range of motion (ROM) associated with each stage of the CCFT using a wearable inertial sensor and to determine the reliability of the measurements and (2) to determine craniocervical flexion ROM targets associated with each stage of the CCFT to standardize their use for assessment and training of the deep cervical flexor (DCF) muscles. Methods Adults from a university community able to successfully perform the CCFT participated in this study. Two independent examiners evaluated the CCFT in two separate sessions. During the CCFT, a small wireless inertial sensor was adhered to the centre of the forehead to provide real-time monitoring and to record craniocervical flexion ROM. The intra- and inter-rater reliability of the assessment of craniocervical ROM was calculated. This study was approved by the Research Ethics Committee of CEU San Pablo University (236/17/08). Results Fifty-six participants (18 males, 23 females; mean [SD] age, 21.8 [3.45] years) were included in the study and successfully completed the study protocol. All interclass correlation coefficient (ICC) values indicated good or excellent reliability of the assessment of craniocervical ROM using a wearable inertial sensor. There was high variability between subjects on the amount of craniocervical ROM necessary to achieve each stage of the CCFT. Conclusions The use of inertial sensors is a reliable method to measure the craniocervical flexion ROM associated with the CCFT. The great variability in the ROM limits the possibility to standardize a set of targets of craniocervical flexion ROM equivalent to each of the pressure targets of the pressure biofeedback unit.

Funder

Banco Santander

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3