Motorless cadence control of standard and low duty cycle-patterned neural stimulation intensity extends muscle-driven cycling output after paralysis

Author:

Gelenitis Kristen,Foglyano Kevin,Lombardo Lisa,McDaniel John,Triolo Ronald

Abstract

Abstract Background Stimulation-driven exercise is often limited by rapid fatigue of the activated muscles. Selective neural stimulation patterns that decrease activated fiber overlap and/or duty cycle improve cycling exercise duration and intensity. However, unequal outputs from independently activated fiber populations may cause large discrepancies in power production and crank angle velocity among pedal revolutions. Enforcing a constant cadence through feedback control of stimulus levels may address this issue and further improve endurance by targeting a submaximal but higher than steady-state exercise intensity. Methods Seven participants with paralysis cycled using standard cadence-controlled stimulation (S-Cont). Four of those participants also cycled with a low duty cycle (carousel) cadence-controlled stimulation scheme (C-Cont). S-Cont and C-Cont patterns were compared with conventional maximal stimulation (S-Max). Outcome measures include total work (W), end power (Pend), power fluctuation (PFI), charge accumulation (Q) and efficiency (η). Physiological measurements of muscle oxygenation (SmO2) and heart rate were also collected with select participants. Results At least one cadence-controlled stimulation pattern (S-Cont or C-Cont) improved Pend over S-Max in all participants and increased W in three participants. Both controlled patterns increased Q and η and reduced PFI compared with S-Max and prior open-loop studies. S-Cont stimulation also delayed declines in SmO2 and increased heart rate in one participant compared with S-Max. Conclusions Cadence-controlled selective stimulation improves cycling endurance and increases efficiency over conventional stimulation by incorporating fiber groups only as needed to maintain a desired exercise intensity. Closed-loop carousel stimulation also successfully reduces power fluctuations relative to previous open-loop efforts, which will enable neuroprosthesis recipients to better take advantage of duty cycle reducing patterns.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implanted Pulse Generators in Lower Extremity Neuroprostheses: A 25-Year Review;Neuromodulation: Technology at the Neural Interface;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3