Cervical trans-spinal direct current stimulation: a modelling-experimental approach

Author:

Fernandes Sofia RitaORCID,Pereira Mariana,Salvador Ricardo,Miranda Pedro Cavaleiro,de Carvalho Mamede

Abstract

Abstract Background Trans-spinal direct current stimulation (tsDCS) is a non-invasive technique with promising neuromodulatory effects on spinal cord (SC) circuitry. Computational studies are essential to guide effective tsDCS protocols for specific clinical applications. This study aims to combine modelling and experimental studies to determine the electrode montage that maximizes electric field (E-field) delivery during cervical tsDCS. Methods Current and E-field distributions in the cervical SC were predicted for four electrode montages in a human realistic model using computational methods. A double-blind crossover and randomized exploratory study was conducted using the montage that maximized E-field delivery. tsDCS was applied for 15 min in 10 healthy subjects (anodal, cathodal, sham, with polarity assigned to the cervical electrode), with a current intensity of 2.5 mA, resulting in a total current charge density delivery of 90 mC/cm2. Upper limb motor (transcranial magnetic stimulation) and sensory evoked potentials (MEP, SEP), M-waves, H-reflex and F-wave responses were analysed. Central and peripheral conduction times were determined using MEP. Repeated measures ANOVA and Friedman test were used for statistical analysis (significance level α = 0.05). Results All montages presented higher current density and E-field magnitudes in the cervical SC region between the electrodes. However, electrodes at C3 and T3 spinous processes (C3-T3) originated the highest E-field magnitude (0.50 V/m). Using C3-T3 montage we observed significant changes in N9 SEP latency (p = 0.006), but significance did not persist in pairwise comparisons (sham-anodal: p = 0.022; sham-cathodal: p = 0.619; anodal-cathodal: p = 0.018; α = 0.017, Bonferroni corrected). MEP latency and central motor conduction time (CMCT) modified significantly on stimulation (p = 0.007 and p = 0.015, respectively). In addition, pairwise comparisons confirmed significant differences between sham and cathodal conditions after Bonferroni correction for MEP latency (sham-anodal: p = 0.868; sham-cathodal: p = 0.011; anodal-cathodal: p = 0.023) and CMCT (sham-anodal: p = 0.929; sham-cathodal: p = 0.010; anodal-cathodal: p = 0.034). Conclusions Computational models predicted higher E-field delivery in the cervical SC for the C3-T3 montage. Polarity-dependent effects in motor responses were reported using this montage consistent with spinal motor modulation. tsDCS experimental protocol designs should be guided by modelling studies to improve effectiveness.

Funder

Fundação para a Ciência e Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3