Triple tSMS system (“SHIN jiba”) for non-invasive deep brain stimulation: a validation study in healthy subjects

Author:

Shibata Sumiya,Watanabe Tatsunori,Matsumoto Takuya,Yunoki Keisuke,Horinouchi Takayuki,Kirimoto Hikari,Zhang Jianxu,Wang Hen,Wu Jinglong,Onishi Hideaki,Mima Tatsuya

Abstract

Abstract Background Transcranial static magnetic field stimulation (tSMS) using a small and strong neodymium (NdFeB) magnet can temporarily suppress brain functions below the magnet. It is a promising non-invasive brain stimulation modality because of its competitive advantages such as safety, simplicity, and low-cost. However, current tSMS is insufficient to effectively stimulate deep brain areas due to attenuation of the magnetic field with the distance from the magnet. The aim of this study was to develop a brand-new tSMS system for non-invasive deep brain stimulation. Methods We designed and fabricated a triple tSMS system with three cylindrical NdFeB magnets placed close to each other. We compared the strength of magnetic field produced by the triple tSMS system with that by the current tSMS. Furthermore, to confirm its function, we stimulated the primary motor area in 17 healthy subjects with the triple tSMS for 20 min and assessed the cortical excitability using the motor evoked potential (MEP) obtained by transcranial magnetic stimulation. Results Our triple tSMS system produced the magnetic field sufficient for neuromodulation up to 80 mm depth from the magnet surface, which was 30 mm deeper than the current tSMS system. In the stimulation experiment, the triple tSMS significantly reduced the MEP amplitude, demonstrating a successful inhibition of the M1 excitability in healthy subjects. Conclusion Our triple tSMS system has an ability to produce an effective magnetic field in deep areas and to modulate the brain functions. It can be used for non-invasive deep brain stimulation.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3