Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review

Author:

Campagnini Silvia,Arienti Chiara,Patrini Michele,Liuzzi Piergiuseppe,Mannini AndreaORCID,Carrozza Maria Chiara

Abstract

Abstract Background Rehabilitation medicine is facing a new development phase thanks to a recent wave of rigorous clinical trials aimed at improving the scientific evidence of protocols. This phenomenon, combined with new trends in personalised medical therapies, is expected to change clinical practice dramatically. The emerging field of Rehabilomics is only possible if methodologies are based on biomedical data collection and analysis. In this framework, the objective of this work is to develop a systematic review of machine learning algorithms as solutions to predict motor functional recovery of post-stroke patients after treatment. Methods We conducted a comprehensive search of five electronic databases using the Patient, Intervention, Comparison and Outcome (PICO) format. We extracted health conditions, population characteristics, outcome assessed, the method for feature extraction and selection, the algorithm used, and the validation approach. The methodological quality of included studies was assessed using the prediction model risk of bias assessment tool (PROBAST). A qualitative description of the characteristics of the included studies as well as a narrative data synthesis was performed. Results A total of 19 primary studies were included. The predictors most frequently used belonged to the areas of demographic characteristics and stroke assessment through clinical examination. Regarding the methods, linear and logistic regressions were the most frequently used and cross-validation was the preferred validation approach. Conclusions We identified several methodological limitations: small sample sizes, a limited number of external validation approaches, and high heterogeneity among input and output variables. Although these elements prevented a quantitative comparison across models, we defined the most frequently used models given a specific outcome, providing useful indications for the application of more complex machine learning algorithms in rehabilitation medicine.

Funder

Ministero della Salute

ministero della salute

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3