Augmented feedback for manual wheelchair propulsion technique training in a virtual reality simulator

Author:

Yan HuiORCID,Archambault Philippe S.

Abstract

Abstract Background Motor learning of appropriate manual wheelchair propulsion is critical, as incorrect technique elevates risk for upper extremity pain. Virtual reality simulators allow users to practice this complex task in a safe and realistic environment. Additionally, augmented feedback (AF) may be provided in order to optimize learning. The purpose of this study was to investigate the effects of providing AF with various delivery schedules on motor learning and transfer of this skill to over-ground propulsion. Methods Thirty healthy young adults were randomly assigned to three groups. During a virtual reality propulsion training session, the high-frequency AF group received AF in the form of knowledge of performance throughout all propulsion training; the faded AF group received this AF in a faded schedule (high relative frequency of AF early in practice, with relative frequency of AF provision diminishing throughout practice); and the control group underwent training with no AF. Propulsion assessments were performed at baseline and 48 h after practice in both virtual and real environments to measure retention and transfer, respectively. Results Compared to the control group, both feedback groups exhibited significant improvements in contact angle and push frequency in both environments after training. Small, non-significant between-group differences were also found between the high-frequency and faded feedback groups. Conclusion Virtual reality training is an effective learning intervention for acquisition, retention, and transfer of appropriate manual wheelchair propulsion technique when such training includes AF regarding propulsion biomechanics.

Funder

AGE-WELL

Ingénierie de Technologies Interactives en Réadaptation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3