Abstract
Abstract
Background
Vibrotactile stimulation is a promising venue in the field of prosthetics to retrain sensory feedback deficits following amputation. Discrimination is well established at the forearm level but not at the upper arm level. Moreover, the effects of combining vibration characteristics such as duration and intensity has never been investigated.
Method
We conducted experiments on spatial discrimination (experiment 1) and tactile intensity perception (experiment 2), using 9 combinations of 3 intensities and 3 durations of vibror stimulations device. Those combinations were tested under 4 arrangements with an array of 6 vibrors. In both experiments, linear orientation aligned with the upper arm longitudinal axis were compared to circular orientation on the upper arm circumference. For both orientations, vibrors were placed either with 3cm space between the center of 2 vibrors or proportionally to the length or the circumference of the subject upper arm. Eleven heathy subjects underwent the 2 experiments and 7 amputees (humeral level) participated in the spatial discrimination task with the best arrangement found.
Results
Experiment 1 revealed that circular arrangements elicited better scores than the linear ones. Arrangements with vibrors spaced proportionally elicited better scores (up to 75% correct) than those with 3 cm spacing. Experiment 2, showed that the perceived intensity of the vibration increases with the intensity of the vibrors’ activation, but also with their duration of activation. The 7 patients obtained high scores (up to 91.67% correct) with the circular proportional (CP) arrangement.
Discussion
These results highlight that discrete and short vibrations can be well discriminated by healthy subjects and people with an upper limb amputation. These new characteristics of vibrations have great potential for future sensory substitution application in closed-loop prosthetic control.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference58 articles.
1. Patel GK, Dosen S, Castellini C, Farina D. Multichannel electrotactile feedback for simultaneous and proportional myoelectric control. J Neural Eng. 2016; 13(5):056015. https://doi.org/10.1088/1741-2560/13/5/056015.
2. Štrbac M, Isaković M, Belić M, Popović I, Simanic I, Farina D, Keller T, Dosen S. Short-and long-term learning of feedforward control of a myoelectric prosthesis with sensory feedback by amputees. IEEE Trans Neural Syst Rehabil Eng. 2017; 4320:1.
3. Witteveen HJ, de Rond L, Rietman JS, Veltink PH. Hand-opening feedback for myoelectric forearm prostheses: Performance in virtual grasping tasks influenced by different levels of distraction. J Rehabil Res Dev. 2012; 49(10):1517. https://doi.org/10.1682/JRRD.2011.12.0243.
4. Witteveen HJ, Luft F, Rietman JS, Veltink PH. Stiffness feedback for myoelectric forearm prostheses using vibrotactile stimulation. IEEE Trans Neural Syst Rehabil Eng. 2014; 22(1):53–61.
5. Wheeler J, Bark K, Savall J, Cutkosky M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Trans Neural Syst Rehabil Eng. 2010; 18(1):58–66. https://doi.org/10.1109/TNSRE.2009.2039602.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献