Author:
Lee-Montiel Felipe T,Reynolds Kelly A,Riley Mark R
Abstract
Abstract
Background
In a globalized word, prevention of infectious diseases is a major challenge. Rapid detection of viable virus particles in water and other environmental samples is essential to public health risk assessment, homeland security and environmental protection. Current virus detection methods, especially assessing viral infectivity, are complex and time-consuming, making point-of-care detection a challenge. Faster, more sensitive, highly specific methods are needed to quantify potentially hazardous viral pathogens and to determine if suspected materials contain viable viral particles. Fourier transform infrared (FTIR) spectroscopy combined with cellular-based sensing, may offer a precise way to detect specific viruses. This approach utilizes infrared light to monitor changes in molecular components of cells by tracking changes in absorbance patterns produced following virus infection. In this work poliovirus (PV1) was used to evaluate the utility of FTIR spectroscopy with cell culture for rapid detection of infective virus particles.
Results
Buffalo green monkey kidney (BGMK) cells infected with different virus titers were studied at 1 - 12 hours post-infection (h.p.i.). A partial least squares (PLS) regression method was used to analyze and model cellular responses to different infection titers and times post-infection. The model performs best at 8 h.p.i., resulting in an estimated root mean square error of cross validation (RMSECV) of 17 plaque forming units (PFU)/ml when using low titers of infection of 10 and 100 PFU/ml. Higher titers, from 103 to 106 PFU/ml, could also be reliably detected.
Conclusions
This approach to poliovirus detection and quantification using FTIR spectroscopy and cell culture could potentially be extended to compare biochemical cell responses to infection with different viruses. This virus detection method could feasibly be adapted to an automated scheme for use in areas such as water safety monitoring and medical diagnostics.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering
Reference55 articles.
1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P: Global trends in emerging infectious diseases. Nature 2008, 451: 990-993. 10.1038/nature06536
2. Pruss-Ustun A, Bos R, Gore F, Bartram J: Safe water, better health: costs, benefits and sustainability of interventions to protect and promote health. World Health Organization, Geneva 2008.
3. Reynolds K, Gerba C, Pepper I: Detection of infectious enteroviruses by an integrated cell culture-PCR procedure. Appl Environ Microbiol 1996, 62: 1424-1427.
4. Schiff GM, Stefanovic GM, Young B, Pennekamp JK: Minimum human infectious dose of enteric viruses (echovirus-12) in drinking water. In Enteric viruses in water Edited by: Melnick JL. 1984, 15: 222-228.
5. Non-polio enterovirus infections, Division of viral Diseases Centers for Disease Control and Prevention[http://www.cdc.gov/ncidod/dvrd/revb/enterovirus/non-polio_entero.htm]
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献