A synthetic biology approach to self-regulatory recombinant protein production in Escherichia coli

Author:

Dragosits Martin,Nicklas Daniel,Tagkopoulos Ilias

Abstract

Abstract Background Recombinant protein production is a process of great industrial interest, with products that range from pharmaceuticals to biofuels. Since high level production of recombinant protein imposes significant stress in the host organism, several methods have been developed over the years to optimize protein production. So far, these trial-and-error techniques have proved laborious and sensitive to process parameters, while there has been no attempt to address the problem by applying Synthetic Biology principles and methods, such as integration of standardized parts in novel synthetic circuits. Results We present a novel self-regulatory protein production system that couples the control of recombinant protein production with a stress-induced, negative feedback mechanism. The synthetic circuit allows the down-regulation of recombinant protein expression through a stress-induced promoter. We used E. coli as the host organism, since it is widely used in recombinant processes. Our results show that the introduction of the self-regulatory circuit increases the soluble/insoluble ratio of recombinant protein at the expense of total protein yield. To further elucidate the dynamics of the system, we developed a computational model that is in agreement with the observed experimental data, and provides insight on the interplay between protein solubility and yield. Conclusion Our work introduces the idea of a self-regulatory circuit for recombinant protein products, and paves the way for processes with reduced external control or monitoring needs. It demonstrates that the library of standard biological parts serves as a valuable resource for initial synthetic blocks that needs to be further refined to be successfully applied in practical problems of biotechnological significance. Finally, the development of a predictive model in conjunction with experimental validation facilitates a better understanding of the underlying dynamics and can be used as a guide to experimental design.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

Reference30 articles.

1. Itakura K, Tadaaki H, Crea R, Riggs AD, Heyneker HL, Bolivar F, Boyer HW: Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. 1977. Biotechnology. 1992, 24: 84-91.

2. Graumann K, Premstaller A: Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J. 2006, 1: 164-186. 10.1002/biot.200500051.

3. Gasser B, Mattanovich D: Antibody production with yeasts and filamentous fungi: on the road to large scale?. BiotechnolLett. 2007, 29: 201-212.

4. Vaishnav P: Production of recombinant proteins by microbes and higher organisms. BiotechnolAdv. 2009, 27: 297-306.

5. Hamilton S, Gerngross T: Glycosylation engineering in yeast: the advent of fully humanized yeast. CurrOpinBiotechnol. 2007, 18: 387-392.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3