Engineering fusogenic molecules to achieve targeted transduction of enveloped lentiviral vectors

Author:

Lei Yuning,Joo Kye-Il,Wang Pin

Abstract

Abstract Background Lentiviral vectors with broad tropism are one of the most promising gene delivery systems capable of efficiently delivering genes of interest into both dividing and non-dividing cells while maintaining long-term transgene expression. However, there are needs for developing lentiviral vectors with the capability to deliver genes to specific cell types, thus reducing the "off-target" effect of gene therapy. In the present study, we investigated the possibility of engineering the fusion-active domain of a fusogenic molecule (FM) with the aim to improve targeted transduction of lentiviral vectors co-displaying an anti-CD20 antibody (αCD20) and a FM. Results Specific mutations were introduced into the fusion domain of a binding-deficient Sindbis virus glycoprotein to generate several mutant FMs. Lentiviral vectors incorporated with αCD20 and one of the engineered FMs were successfully produced and demonstrated to be able to preferentially deliver genes to CD-20-expressing cells. Lentiviral vectors bearing engineered FMs exhibited 8 to 17-fold enhanced transduction towards target cells as compared to the parental FM. Different levels of enhancement were observed for the different engineered FMs. A pH-dependent study of vector transduction showed that the broader pH range of the engineered FM is a possible mechanism for the resulted increase in transduction efficiency. Conclusion The fusion domain of Sindbis virus glycoprotein is amenable for engineering and the engineered proteins provide elevated capacity to mediate lentiviral vectors for targeted transduction. Our data suggests that application of such an engineering strategy can optimize the two-molecular targeting method of lentiviral vectors for gene delivery to predetermined cells.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3