Author:
Zuberi Mahvash,Liu-Snyder Peishan,ul Haque Aeraj,Porterfield David M,Borgens Richard B
Abstract
Abstract
Background
Immediately after damage to the nervous system, a cascade of physical, physiological, and anatomical events lead to the collapse of neuronal function and often death. This progression of injury processes is called "secondary injury." In the spinal cord and brain, this loss in function and anatomy is largely irreversible, except at the earliest stages. We investigated the most ignored and earliest component of secondary injury. Large bioelectric currents immediately enter damaged cells and tissues of guinea pig spinal cords. The driving force behind these currents is the potential difference of adjacent intact cell membranes. For perhaps days, it is the biophysical events caused by trauma that predominate in the early biology of neurotrauma.
Results
An enormous (≤ mA/cm2) bioelectric current transverses the site of injury to the mammalian spinal cord. This endogenous current declines with time and with distance from the local site of injury but eventually maintains a much lower but stable value (< 50 μA/cm2).
The calcium component of this net current, about 2.0 pmoles/cm2/sec entering the site of damage for a minimum of an hour, is significant. Curiously, injury currents entering the ventral portion of the spinal cord may be as high as 10 fold greater than those entering the dorsal surface, and there is little difference in the magnitude of currents associated with crush injuries compared to cord transection. Physiological measurements were performed with non-invasive sensors: one and two-dimensional extracellular vibrating electrodes in real time. The calcium measurement was performed with a self-referencing calcium selective electrode.
Conclusion
The enormous bioelectric current, carried in part by free calcium, is the major initiator of secondary injury processes and causes significant damage after breach of the membranes of vulnerable cells adjacent to the injury site. The large intra-cellular voltages, polarized along the length of axons in particular, are believed to be associated with zones of organelle death, distortion, and asymmetry observed in acutely injured nerve fibers. These data enlarge our understanding of secondary mechanisms and provide new ways to consider interfering with this catabolic and progressive loss of tissue.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering
Reference27 articles.
1. Borgens R: Restoring Function to the Injured Human Spinal Cord. In Advances in Anatomy, Embryology and Cell Biology. (Monograph) Springer-Verlag Heidelberg, Germany; 2003.
2. Hall ED, Braughler JM: Free radicals in CNS injury. Res Publ Assoc Res Nerv Ment Dis 1993, 71: 81-105.
3. Liu-Snyder P, McNally HA, Shi R, Borgens R: Acrolein-Mediated Mechanisms of Neuronal Death. Journal of Neuroscience Research 2006, 84: 209-218.
4. Blight AR: Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Central Nervous System Trauma 1985, 2: 299-315.
5. Liu-Snyder P, Borgens R, Shi R: Hydralazine Rescues PC12 Cells from Acrolein-Mediated Death. Journal of Neuroscience Research 2006, 84: 219-227.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献