Author:
Barstow Buz,Agapakis Christina M,Boyle Patrick M,Grandl Gerald,Silver Pamela A,Wintermute Edwin H
Abstract
Abstract
Background
FeFe-hydrogenases are the most active class of H2-producing enzymes known in nature and may have important applications in clean H2 energy production. Many potential uses are currently complicated by a crucial weakness: the active sites of all known FeFe-hydrogenases are irreversibly inactivated by O2.
Results
We have developed a synthetic metabolic pathway in E. coli that links FeFe-hydrogenase activity to the production of the essential amino acid cysteine. Our design includes a complementary host strain whose endogenous redox pool is insulated from the synthetic metabolic pathway. Host viability on a selective medium requires hydrogenase expression, and moderate O2 levels eliminate growth. This pathway forms the basis for a genetic selection for O2 tolerance. Genetically selected hydrogenases did not show improved stability in O2 and in many cases had lost H2 production activity. The isolated mutations cluster significantly on charged surface residues, suggesting the evolution of binding surfaces that may accelerate hydrogenase electron transfer.
Conclusions
Rational design can optimize a fully heterologous three-component pathway to provide an essential metabolic flux while remaining insulated from the endogenous redox pool. We have developed a number of convenient in vivo assays to aid in the engineering of synthetic H2 metabolism. Our results also indicate a H2-independent redox activity in three different FeFe-hydrogenases, with implications for the future directed evolution of H2-activating catalysts.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering
Reference73 articles.
1. Vignais PM, Billoud B: Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 2007, 107: 4206-4272. 10.1021/cr050196r
2. Hambourger M, Kodis G, Vaughn MD, Moore GF, Gust D, Moore AL, Moore TA: Solar energy conversion in a photoelectrochemical biofuel cell. Dalton Trans 2009, 9979-9989.
3. Blackburn JL, Svedruzic D, Mcdonald TJ, Kim Y, King PW, Heben MJ: Raman spectroscopy of charge transfer interactions between single wall carbon nanotubes and [FeFe] hydrogenase. Dalton Trans 2008, 5454-5461.
4. Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA: Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles. J Am Chem Soc 2009, 131: 18457-18466. 10.1021/ja907923r
5. Benemann JR, Berenson JA, Kaplan NO, Kamen MD: Hydrogen Evolution by a Chloroplast-Ferredoxin-Hydrogenase System. Proc Natl Acad Sci USA 1973, 70: 2317-2320. 10.1073/pnas.70.8.2317
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献