Abstract
Abstract
Background
The potential to distribute bacteria resistant to antimicrobial drugs in the meat supply is a public health concern. Market cows make up a fifth of the U.S. beef produced but little is known about the entire population of bacteria (the microbiome) and entirety of all resistance genes (the resistome) that are found in this population. The objective of this study was to characterize and compare the resistomes and microbiome of beef, dairy, and organic dairy market cows at slaughter.
Methods
Fifty-four (N = 54) composite samples of both colon content and meat trimmings rinsate samples were collected over six visits to two harvest facilities from cows raised in three different production systems: conventional beef, conventional dairy, and organic dairy (n = 3 samples per visit per production system). Metagenomic DNA obtained from samples were analyzed using target-enriched sequencing (resistome) and 16S rRNA gene sequencing (microbiome).
Results
All colon content samples had at least one identifiable antimicrobial resistance gene (ARG), while 21 of the 54 meat trimmings samples harbored at least one identifiable ARGs. Tetracycline ARGs were the most abundant class in both colon content and carcass meat trimmings. The resistome found on carcass meat trimmings was not significantly different by production system (P = 0.84, R2 = 0.00) or harvest facility (P = 0.10, R2 = 0.09). However, the resistome of colon content differed (P = 0.01; R2 = 0.05) among production systems, but not among the harvest facilities (P = 0.41; R2 = 0.00). Amplicon sequencing revealed differences (P < 0.05) in microbial populations in both meat trimmings and colon content between harvest facilities but not production systems (P > 0.05).
Conclusions
These data provide a baseline characterization of an important segment of the beef industry and highlight the effect that the production system where cattle are raised and the harvest facilities where an animal is processed can impact associated microbiome and resistomes.
Funder
National Beef Checkoff
Agricultural Research Service
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Center for Disease Control and Prevention. ANTIBIOTIC RESISTANCE THREATS in the United States, 2013. US Department of Health and Human Services. http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.
2. Center for Disease Control and Prevention. Antibiotic Resistance, Food, and Food-Producing Animals. Centers for Disease Control and Prevention. 2017. https://www.cdc.gov/features/antibiotic-resistance-food/index.html. Accessed 26 Dec 2017.
3. Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist. 2015;8:49–61. https://doi.org/10.2147/IDR.S55778.
4. World Health Organization. Global action plan on antimicrobial resistance. Geneva, Switzerland. 2015. http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua=1.
5. Smith DR, Gaunt PS, Plummer PJ, Cervantes HM, Davies P, Fajt VR, et al. The AVMA’s definitions of antimicrobial uses for prevention, control, and treatment of disease. J Am Vet Med Assoc. 2019;254:792–7. https://doi.org/10.2460/javma.254.7.792.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献