Author:
Hill Elizabeth M.,Howard Christopher D.,Bale Tracy L.,Jašarević Eldin
Abstract
Abstract
Background
For more than 30 years, the tetracycline on/off system of inducible gene expression has been leveraged to study disease mechanisms across many research areas, especially that of metabolism and neuroscience. This system requires acute or chronic exposure to tetracycline derivatives, such as doxycycline, to manipulate gene expression in a temporal and tissue-specific manner, with exposure often being restricted to gestational and early developmental windows. Despite evidence showing that early life antibiotic exposure has adverse effects on gut microbiota, metabolism, physiology, immunity and behavior, little is known regarding the lasting impact of doxycycline treatment on relevant outcomes in experimental offspring.
Results
To examine the hypothesis that early life doxycycline exposure produces effects on offspring growth, behavior, and gut microbiota, we employed the most commonly used method for tetracycline on/off system by administering a low dose of doxycycline (0.5 mg/ml) in the drinking water to C57Bl/6J and C57BL/6J:129S1/SvImJ dams from embryonic day 15.5 to postnatal day 28. Developmental exposure to low dose doxycycline resulted in significant alterations to growth trajectories and body weight in both strains, which persisted beyond cessation of doxycycline exposure. Developmental doxycycline exposure influenced offspring bacterial community assembly in a temporal and sex-specific manner. Further, gut microbiota composition failed to recover by adulthood, suggesting a lasting imprint of developmental antibiotic exposure.
Conclusions
Our results demonstrated that early life doxycycline exposure shifts the homeostatic baseline of prior exposed animals that may subsequently impact responses to experimental manipulations. These results highlight the gut microbiota as an important factor to consider in systems requiring methods of chronic antibiotic administration during pregnancy and critical periods of postnatal development.
Funder
National Institute of Mental Health
National Institute of Child Health and Human Development
National Institute of Environmental Health Sciences
National Institute of Diabetes and Digestive and Kidney Diseases
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases;Antioxidants;2024-08-14
2. Assessment of Antimicrobial Therapy in EradicatingChlamydia muridarumin Research Mice: Immune Status and its Impact on Outcomes;2024-06-29
3. Environmental antibiotics exposure and childhood obesity: A cross-sectional case-control study;Ecotoxicology and Environmental Safety;2024-06
4. Tetracyclines contamination in European aquatic environments: A comprehensive review of occurrence, fate, and removal techniques;Chemosphere;2024-04
5. Review of Teratogenic Effects of Leflunomide, Accutane, Thalidomide, Warfarin, Tetracycline, and Angiotensin-Converting Enzyme Inhibitors;Cureus;2023-12-13