Expressions of resistome is linked to the key functions and stability of active rumen microbiome

Author:

Ma Tao,Zaheer Rahat,McAllister Tim A.,Guo Wei,Li Fuyong,Tu Yan,Diao Qiyu,Guan Le LuoORCID

Abstract

Abstract Background The resistome describes the array of antibiotic resistant genes (ARGs) present within a microbial community. Recent research has documented the resistome in the rumen of ruminants and revealed that the type and abundance of ARGs could be affected by diet and/or antibiotic treatment. However, most of these studies only assessed ARGs using metagenomics, and expression of the resistome and its biological function within the microbiome remains largely unexplored. Results We characterized the pools of ARGs (resistome) and their activities in the rumen of 48 beef cattle belonging to three breeds (Angus, Charolais, Kinsella composite hybrid), using shotgun metagenomics and metatranscriptomics. Sixty (including 20 plasmid-associated) ARGs were expressed which accounted for about 30% of the total number of ARGs (187) identified in metagenomic datasets, with tetW and mefA exhibiting the highest level of expression. In addition, the bacterial hosts of 17 expressed ARGs were identified. The active resistome was less diverse in Kinsella composite hybrid than Angus, however, expression of ARGs did not differ among breeds. Although not associated with feed efficiency, the total abundance of expressed ARGs was positively correlated with metabolic pathways and ‘attenuation values’ (a measurement of stability) of the active rumen microbiome, suggesting that ARGs expression influences the stability and functionality of the rumen microbiome. Moreover, Ruminococcus spp., Prevotella ruminicola, Muribaculaceae spp. and Collinsella aerofaciens were all identified as hosts of expressed ARGs, possibly promoting the dominance of these carbohydrate degraders within the rumen microbiome. Conclusions Findings from this study provide new insight into the active rumen resistome in vivo, which may inform strategies to limit the spread of ubiquitously found ARGs from the rumen to the broader environment without negatively impacting the key functional outcomes of the rumen microbiome.

Funder

Central Public-interest Scientific Institution Basal Research Fund

Ministry of Agriculture, Forestry and Fisheries

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Genome Alberta

Agricultural Science and Technology Innovation Program

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3