Intestine and spleen microbiota composition in healthy and diseased tilapia

Author:

Ofek Tamir,Lalzar Maya,Izhaki Ido,Halpern Malka

Abstract

AbstractSymbiotic bacteria within the gut microbiome of various organisms, including fish, provide the host with several functions that improve the immune system. Although the spleen plays an important role in the modulation of immune responses, the role of spleen microbiota in shaping the immune system is unclear. Our study aimed at understanding the relationship between fish health and microbiota composition in the intestine and spleen. Our model organism was the hybrid tilapia (Oreochromis aureus × Oreochromis niloticus). We sampled intestine and spleen from healthy and diseased adult tilapia and determined their microbiota composition by sequencing the 16S rRNA gene. Significant differences were found between the intestine and the spleen microbiota composition of healthy compared to diseased fish as well as between intestines and spleens of fish with the same health condition. The microbiota diversity of healthy fish compared to diseased fish was significantly different as well. In the intestine of healthy fish, Cetobacterium was the most abundant genus while Mycoplasma was the most abundant genus in the spleen. Vibrio was the most abundant genus in the intestine and spleen of diseased fish. Moreover, it seems that there is a co-infection interaction between Vibrio and Aeromonas, which was reflected in the spleen of diseased fish. While Vibrio, Aeromonas and Streptococcus were the probable pathogens in the diseased fish, the role of Mycoplasma as a pathogen of cultured hybrid tilapia remains uncertain. We conclude that the intestine and spleen microbiota composition is strongly related to the health condition of the fish.

Funder

United States - Israel Binational Science Foundation

India-Israel Joint UGC-ISF

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference51 articles.

1. Butt RL, Volkoff H. Gut microbiota and energy homeostasis in fish. Front Endocrinol. 2019;10:9. https://doi.org/10.3389/fendo.2019.00009.

2. Yukgehnaish K, Kumar P, Sivachandran P, Marimuthu K, Arshad A, Paray BA, et al. Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Rev Aquac. 2020;12:1903–27.

3. Ray C, Bujan N, Tarnecki A, Davis AD, Browdy C, Arias CR. Analysis of the gut microbiome of Nile tilapia Oreochromis niloticus L. fed diets supplemented with Previda® and saponin. J Fish. 2017;11:36–45.

4. Bereded NK, Curto M, Domig KJ, Abebe GB, Fanta SW, Waidbacher H, et al. Metabarcoding analyses of gut microbiota of Nile tilapia (Oreochromis niloticus) from Lake Awassa and Lake Chamo, Ethiopia. Microorganisms. 2020;8:1–19.

5. Ofek T, Lalzar M, Laviad-shitrit S, Izhaki I, Halpern M. Comparative study of intestinal microbiota composition of six edible fish species. Front Microbiol. 2021;12:1–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3