A prediction model for massive hemorrhage in trauma: a retrospective observational study

Author:

Guo Chengyu,Gong Minghui,Ji Lei,Pan Fei,Han Hui,Li Chunping,Li Tanshi

Abstract

Abstract Background Massive hemorrhage is the main cause of preventable death after trauma. This study aimed to establish prediction models for early diagnosis of massive hemorrhage in trauma. Methods Using the trauma database of Chinese PLA General Hospital, two logistic regression (LR) models were fit to predict the risk of massive hemorrhage in trauma. Sixty-two potential predictive variables, including clinical symptoms, vital signs, laboratory tests, and imaging results, were included in this study. Variable selection was done using the least absolute shrinkage and selection operator (LASSO) method. The first model was constructed based on LASSO feature selection results. The second model was constructed based on the first vital sign recordings of trauma patients after admission. Finally, a web calculator was developed for clinical use. Results A total of 2353 patients were included in this study. There were 377 (16.02%) patients with massive hemorrhage. The selected predictive variables were heart rate (OR: 1.01; 95% CI: 1.01–1.02; P<0.001), pulse pressure (OR: 0.99; 95% CI: 0.98–0.99; P = 0.004), base excess (OR: 0.90; 95% CI: 0.87–0.93; P<0.001), hemoglobin (OR: 0.95; 95% CI: 0.95–0.96; P<0.001), displaced pelvic fracture (OR: 2.13; 95% CI: 1.48–3.06; P<0.001), and a positive computed tomography scan or positive focused assessment with sonography for trauma (OR: 1.62; 95% CI: 1.21–2.18; P = 0.001). Model 1, which was developed based on LASSO feature selection results and LR, displayed excellent discrimination (AUC: 0.894; 95% CI: 0.875–0.912), good calibration (P = 0.405), and clinical utility. In addition, the predictive power of model 1 was better than that of model 2 (AUC: 0.718; 95% CI: 0.679–0.757). Model 1 was deployed as a public web tool (http://82.156.217.249:8080/). Conclusions Our study developed and validated prediction models to assist medical staff in the early diagnosis of massive hemorrhage in trauma. An open web calculator was developed to facilitate the practical application of the research results.

Publisher

Springer Science and Business Media LLC

Subject

Emergency Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3