Abstract
AbstractThis paper examines inference on social interactions models in the presence of missing data on outcomes. In these models, missing data on outcomes imply an incomplete data problem on both the endogenous variable and the regressors. However, getting a sharp estimate of the partially identified coefficients is computationally difficult. Using a monotonicity property of the peer effects and a mean independence condition of individual decisions on the missing data, I show partial identification results for the binary choice peer effect model. A Monte Carlo exercise then summarizes the computational time and the accuracy performance of the interval estimators under some calibrations.
Funder
Fundação para a Ciência e a Tecnologia
Fundação Calouste Gulbenkian
Publisher
Springer Science and Business Media LLC
Subject
Economics and Econometrics,Statistics and Probability
Reference29 articles.
1. Advani, A., & Malde, B. (2018). Methods to identify linear network models: a review. Swiss Journal of Economics and Statistics, 154, 12.
2. Ammermueller, A., & Pischke, J. (2009). Peer effects in European primary schools: Evidence from the progress in international reading literacy study. Journal of Labor Economics, 27(3), 15–348.
3. Bailey, M., D. Johnston, M. Koenen, T. Kuchler, D. Russel, & J. Stroebel (2021). Social Networks shape beliefs and behavior: Evidence from social distancing during the COVID-19 pandemic. NBER WP 28234.
4. Blume, L., Brock, W., Durlauf, S., & Ioannides, Y. (2010). Identification of social interactions. Handbook of Social Economics, 18, 853–964.
5. Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer effects through social networks. Journal of Econometrics, 150, 41–55.