3DFAACTS-SNP: using regulatory T cell-specific epigenomics data to uncover candidate mechanisms of type 1 diabetes (T1D) risk

Author:

Liu Ning,Sadlon Timothy,Wong Ying Y.,Pederson Stephen,Breen JamesORCID,Barry Simon C.

Abstract

Abstract Background Genome-wide association studies (GWAS) have enabled the discovery of single nucleotide polymorphisms (SNPs) that are significantly associated with many autoimmune diseases including type 1 diabetes (T1D). However, many of the identified variants lie in non-coding regions, limiting the identification of mechanisms that contribute to autoimmune disease progression. To address this problem, we developed a variant filtering workflow called 3DFAACTS-SNP to link genetic variants to target genes in a cell-specific manner. Here, we use 3DFAACTS-SNP to identify candidate SNPs and target genes associated with the loss of immune tolerance in regulatory T cells (Treg) in T1D. Results Using 3DFAACTS-SNP, we identified from a list of 1228 previously fine-mapped variants, 36 SNPs with plausible Treg-specific mechanisms of action. The integration of cell type-specific chromosome conformation capture data in 3DFAACTS-SNP identified 266 regulatory regions and 47 candidate target genes that interact with these variant-containing regions in Treg cells. We further demonstrated the utility of the workflow by applying it to three other SNP autoimmune datasets, identifying 16 Treg-centric candidate variants and 60 interacting genes. Finally, we demonstrate the broad utility of 3DFAACTS-SNP for functional annotation of all known common (> 10% allele frequency) variants from the Genome Aggregation Database (gnomAD). We identified 9376 candidate variants and 4968 candidate target genes, generating a list of potential sites for future T1D or other autoimmune disease research. Conclusions We demonstrate that it is possible to further prioritise variants that contribute to T1D based on regulatory function, and illustrate the power of using cell type-specific multi-omics datasets to determine disease mechanisms. Our workflow can be customised to any cell type for which the individual datasets for functional annotation have been generated, giving broad applicability and utility.

Funder

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3