The histone methyltransferase Setd8 alters the chromatin landscape and regulates the expression of key transcription factors during erythroid differentiation

Author:

Myers Jacquelyn A.,Couch Tyler,Murphy Zachary,Malik Jeffrey,Getman Michael,Steiner Laurie A.ORCID

Abstract

Abstract Background SETD8 is the sole methyltransferase capable of mono-methylating histone H4, lysine 20. SETD8 and H4K20me1 play a role in a number of essential biologic processes, including cell cycle progression, establishment of higher order chromatin structure, and transcriptional regulation. SETD8 is highly expressed in erythroid cells and erythroid deletion of Setd8 is embryonic lethal by embryonic day 11.5 (E11.5) due to profound anemia, suggesting that it has an erythroid-specific function. The function of SETD8 in the hemopoietic system is poorly understood. The goal of our study was to gain insights into the function of SETD8 during erythroid differentiation. Results We performed ATAC-seq (assay for transposase-accessible chromatin) on sorted populations of E10.5 Setd8 mutant and control erythroblasts. Accessibility profiles were integrated with expression changes and a mark of heterochromatin (H3K27me3) performed in wild-type E10.5 erythroblasts to further understand the role of SETD8 in erythropoiesis. Data integration identified regions of greater chromatin accessibility in Setd8 mutant cells that co-located with H3K27me3 in wild-type E10.5 erythroblasts suggesting that these regions, and their associated genes, are repressed during normal erythropoiesis. The majority of these more accessible regions were located in promoters and they frequently co-located with the NFY complex. Pathway analysis of genes identified through data integration revealed stemness-related pathways. Among those genes were multiple transcriptional regulators active in multipotent progenitors, but repressed during erythroid differentiation including Hhex, Hlx, and Gata2. Consistent with a role for SETD8 in erythroid specification, SETD8 expression is up-regulated upon erythroid commitment, and Setd8 disruption impairs erythroid colony forming ability. Conclusion Taken together, our results suggest that SETD8 is an important regulator of the chromatin landscape during erythroid differentiation, particularly at promoters. Our results also identify a novel role for Setd8 in the establishment of appropriate patterns of lineage-restricted gene expression during erythroid differentiation.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3