DNA methylation suppresses chitin degradation and promotes the wing development by inhibiting Bmara-mediated chitinase expression in the silkworm, Bombyx mori

Author:

Xu Guanfeng,Yi Yangqin,Lyu Hao,Gong Chengcheng,Feng Qili,Song Qisheng,Peng Xuezhen,Liu Lin,Zheng SichunORCID

Abstract

Abstract Background DNA methylation, as an essential epigenetic modification found in mammals and plants, has been implicated to play an important role in insect reproduction. However, the functional role and the regulatory mechanism of DNA methylation during insect organ or tissue development are far from being clear. Results Here, we found that DNA methylation inhibitor (5-aza-dC) treatment in newly molted pupae decreased the chitin content of pupal wing discs and adult wings and resulted in wing deformity of Bombyx mori. Transcriptome analysis revealed that the up-regulation of chitinase 10 (BmCHT10) gene might be related to the decrease of chitin content induced by 5-aza-dC treatment. Further, the luciferase activity assays demonstrated that DNA methylation suppressed the promoter activity of BmCHT10 by down-regulating the transcription factor, homeobox protein araucan (Bmara). Electrophoretic mobility shift assay, DNA pull-down and chromatin immunoprecipitation demonstrated that Bmara directly bound to the BmCHT10 promoter. Therefore, DNA methylation is involved in keeping the structural integrity of the silkworm wings from unwanted chitin degradation, as a consequence, it promotes the wing development of B. mori. Conclusions This study reveals that DNA methylation plays an important role in the wing development of B. mori. Our results support that the indirect transcriptional repression of a chitin degradation-related gene BmCHT10 by DNA methylation is necessary to keep the proper wing development in B. mori.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3