Abstract
AbstractHistone chaperones facilitate DNA replication and repair by promoting chromatin assembly, disassembly and histone exchange. Following histones synthesis and nucleosome assembly, the histones undergo posttranslational modification by different enzymes and are deposited onto chromatins by various histone chaperones. In Tetrahymena thermophila, histones from macronucleus (MAC) and micronucleus (MIC) have been comprehensively investigated, but the function of histone chaperones remains unclear. Histone chaperone Nrp1 in Tetrahymena contains four conserved tetratricopepeptide repeat (TPR) domains and one C-terminal nuclear localization signal. TPR2 is typically interrupted by a large acidic motif. Immunofluorescence staining showed that Nrp1 is located in the MAC and MICs, but disappeared in the apoptotic parental MAC and the degraded MICs during the conjugation stage. Nrp1 was also colocalized with α-tubulin around the spindle structure. NRP1 knockdown inhibited cellular proliferation and led to the loss of chromosome, abnormal macronuclear amitosis, and disorganized micronuclear mitosis during the vegetative growth stage. During sexual developmental stage, the gametic nuclei failed to be selected and abnormally degraded in NRP1 knockdown mutants. Affinity purification combined with mass spectrometry analysis indicated that Nrp1 is co-purified with core histones, heat shock proteins, histone chaperones, and DNA damage repair proteins. The physical direct interaction of Nrp1 and Asf1 was also confirmed by pull-down analysis in vitro. The results show that histone chaperone Nrp1 is involved in micronuclear mitosis and macronuclear amitosis in the vegetative growth stage and maintains gametic nuclei formation during the sexual developmental stage. Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila.
Funder
National Natural Science Foundation of China
Shanxi Scholarship Council of China
Natural Science Foundation of Shanxi Province
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献