Mitochondrial supplementation of Sus scrofa metaphase II oocytes alters DNA methylation and gene expression profiles of blastocysts

Author:

Okada Takashi,McIlfatrick Stephen,Hin Nhi,Aryamanesh Nader,Breen James,St. John Justin C.ORCID

Abstract

Abstract Background Mitochondrial DNA (mtDNA) copy number in oocytes correlates with oocyte quality and fertilisation outcome. The introduction of additional copies of mtDNA through mitochondrial supplementation of mtDNA-deficient Sus scrofa oocytes resulted in: (1) improved rates of fertilisation; (2) increased mtDNA copy number in the 2-cell stage embryo; and (3) improved development of the embryo to the blastocyst stage. Furthermore, a subset of genes showed changes in gene expression. However, it is still unknown if mitochondrial supplementation alters global and local DNA methylation patterns during early development. Results We generated a series of embryos in a model animal, Sus scrofa, by intracytoplasmic sperm injection (ICSI) and mitochondrial supplementation in combination with ICSI (mICSI). The DNA methylation status of ICSI- and mICSI-derived blastocysts was analysed by whole genome bisulfite sequencing. At a global level, the additional copies of mtDNA did not affect nuclear DNA methylation profiles of blastocysts, though over 2000 local genomic regions exhibited differential levels of DNA methylation. In terms of the imprinted genes, DNA methylation patterns were conserved in putative imprint control regions; and the gene expression profile of these genes and genes involved in embryonic genome activation were not affected by mitochondrial supplementation. However, 52 genes showed significant differences in expression as demonstrated by RNAseq analysis. The affected gene networks involved haematological system development and function, tissue morphology and cell cycle. Furthermore, seven mtDNA-encoded t-RNAs were downregulated in mICSI-derived blastocysts suggesting that extra copies of mtDNA affected tRNA processing and/or turnover, hence protein synthesis in blastocysts. We also showed a potential association between differentially methylated regions and changes in expression for 55 genes due to mitochondrial supplementation. Conclusions The addition of just an extra ~ 800 copies of mtDNA into oocytes can have a significant impact on both gene expression and DNA methylation profiles in Sus scrofa blastocysts by altering the epigenetic programming established during oogenesis. Some of these changes may affect specific tissue-types later in life. Consequently, it is important to determine the longitudinal effect of these molecular changes on growth and development before considering human clinical practice.

Funder

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3