Predicting outbreaks: a spatial risk assessment of West Nile virus in British Columbia

Author:

Tachiiri Kaoru,Klinkenberg Brian,Mak Sunny,Kazmi Jamil

Abstract

Abstract Background West Nile virus (WNv) has recently emerged as a health threat to the North American population. After the initial disease outbreak in New York City in 1999, WNv has spread widely and quickly across North America to every contiguous American state and Canadian province, with the exceptions of British Columbia (BC), Prince Edward Island and Newfoundland. In this study we develop models of mosquito population dynamics for Culex tarsalis and C. pipiens, and create a spatial risk assessment of WNv prior to its arrival in BC by creating a raster-based mosquito abundance model using basic geographic and temperature data. Among the parameters included in the model are spatial factors determined from the locations of BC Centre for Disease Control mosquito traps (e.g., distance of the trap from the closest wetland or lake), while other parameters were obtained from the literature. Factors not considered in the current assessment but which could influence the results are also discussed. Results Since the model performs much better for C. tarsalis than for C. pipiens, the risk assessment is carried out using the output of C. tarsalis model. The result of the spatially-explicit mosquito abundance model indicates that the Okanagan Valley, the Thompson Region, Greater Vancouver, the Fraser Valley and southeastern Vancouver Island have the highest potential abundance of the mosquitoes. After including human population data, Greater Vancouver, due to its high population density, increases in significance relative to the other areas. Conclusion Creating a raster-based mosquito abundance map enabled us to quantitatively evaluate WNv risk throughout BC and to identify the areas of greatest potential risk, prior to WNv introduction. In producing the map important gaps in our knowledge related to mosquito ecology in BC were identified, as well, it became evident that increased efforts in bird and mosquito surveillance are required if more accurate models and maps are to be produced. Access to real time climatic data is the key for developing a real time early warning system for forecasting vector borne disease outbreaks, while including social factors is important when producing a detailed assessment in urban areas.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

Reference68 articles.

1. Public Health Agency of Canada: Human Results – 2003 Program: West Nile Virus Neurological Syndromes, West Nile Virus Fever and West Nile Virus Asymptomatic Infection. [http://dsol-smed.phac-aspc.gc.ca/wnv3/map_e.phtml?appname=humanw&season=2003]

2. Komar N: West Nile virus: epidemiology and ecology in North America. Adv Virus Res. 2003, 61: 185-234.

3. Turell MJ, Sardelis MR, O'Guinn ML, Dohm DJ: Potential vectors of West Nile virus in North America. Curr Top Microbiol Immunol. 2002, 267: 241-252.

4. British Columbia Centre for Disease Control. [http://www.bccdc.org]

5. Wagner VE, Hill-Rowley R, Narlock SA, Mewson HD: Remote sensing; a rapid and accurate method of data acquisition for a newly formed mosquito control district. Mosq News. 1979, 39 (2): 283-287.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3