Author:
Tachiiri Kaoru,Klinkenberg Brian,Mak Sunny,Kazmi Jamil
Abstract
Abstract
Background
West Nile virus (WNv) has recently emerged as a health threat to the North American population. After the initial disease outbreak in New York City in 1999, WNv has spread widely and quickly across North America to every contiguous American state and Canadian province, with the exceptions of British Columbia (BC), Prince Edward Island and Newfoundland. In this study we develop models of mosquito population dynamics for Culex tarsalis and C. pipiens, and create a spatial risk assessment of WNv prior to its arrival in BC by creating a raster-based mosquito abundance model using basic geographic and temperature data. Among the parameters included in the model are spatial factors determined from the locations of BC Centre for Disease Control mosquito traps (e.g., distance of the trap from the closest wetland or lake), while other parameters were obtained from the literature. Factors not considered in the current assessment but which could influence the results are also discussed.
Results
Since the model performs much better for C. tarsalis than for C. pipiens, the risk assessment is carried out using the output of C. tarsalis model. The result of the spatially-explicit mosquito abundance model indicates that the Okanagan Valley, the Thompson Region, Greater Vancouver, the Fraser Valley and southeastern Vancouver Island have the highest potential abundance of the mosquitoes. After including human population data, Greater Vancouver, due to its high population density, increases in significance relative to the other areas.
Conclusion
Creating a raster-based mosquito abundance map enabled us to quantitatively evaluate WNv risk throughout BC and to identify the areas of greatest potential risk, prior to WNv introduction. In producing the map important gaps in our knowledge related to mosquito ecology in BC were identified, as well, it became evident that increased efforts in bird and mosquito surveillance are required if more accurate models and maps are to be produced. Access to real time climatic data is the key for developing a real time early warning system for forecasting vector borne disease outbreaks, while including social factors is important when producing a detailed assessment in urban areas.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science
Reference68 articles.
1. Public Health Agency of Canada: Human Results – 2003 Program: West Nile Virus Neurological Syndromes, West Nile Virus Fever and West Nile Virus Asymptomatic Infection. [http://dsol-smed.phac-aspc.gc.ca/wnv3/map_e.phtml?appname=humanw&season=2003]
2. Komar N: West Nile virus: epidemiology and ecology in North America. Adv Virus Res. 2003, 61: 185-234.
3. Turell MJ, Sardelis MR, O'Guinn ML, Dohm DJ: Potential vectors of West Nile virus in North America. Curr Top Microbiol Immunol. 2002, 267: 241-252.
4. British Columbia Centre for Disease Control. [http://www.bccdc.org]
5. Wagner VE, Hill-Rowley R, Narlock SA, Mewson HD: Remote sensing; a rapid and accurate method of data acquisition for a newly formed mosquito control district. Mosq News. 1979, 39 (2): 283-287.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献