Enhancing spatial detection accuracy for syndromic surveillance with street level incidence data

Author:

Savory David J,Cox Kenneth L,Emch Michael,Alemi Farrokh,Pattie David C

Abstract

Abstract Background The Department of Defense Military Health System operates a syndromic surveillance system that monitors medical records at more than 450 non-combat Military Treatment Facilities (MTF) worldwide. The Electronic Surveillance System for Early Notification of Community-based Epidemics (ESSENCE) uses both temporal and spatial algorithms to detect disease outbreaks. This study focuses on spatial detection and attempts to improve the effectiveness of the ESSENCE implementation of the spatial scan statistic by increasing the spatial resolution of incidence data from zip codes to street address level. Methods Influenza-Like Illness (ILI) was used as a test syndrome to develop methods to improve the spatial accuracy of detected alerts. Simulated incident clusters of various sizes were superimposed on real ILI incidents from the 2008/2009 influenza season. Clusters were detected using the spatial scan statistic and their displacement from simulated loci was measured. Detected cluster size distributions were also evaluated for compliance with simulated cluster sizes. Results Relative to the ESSENCE zip code based method, clusters detected using street level incidents were displaced on average 65% less for 2 and 5 mile radius clusters and 31% less for 10 mile radius clusters. Detected cluster size distributions for the street address method were quasi normal and sizes tended to slightly exceed simulated radii. ESSENCE methods yielded fragmented distributions and had high rates of zero radius and oversized clusters. Conclusions Spatial detection accuracy improved notably with regard to both location and size when incidents were geocoded to street addresses rather than zip code centroids. Since street address geocoding success rates were only 73.5%, zip codes were still used for more than one quarter of ILI cases. Thus, further advances in spatial detection accuracy are dependant on systematic improvements in the collection of individual address information.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3