Author:
Savory David J,Cox Kenneth L,Emch Michael,Alemi Farrokh,Pattie David C
Abstract
Abstract
Background
The Department of Defense Military Health System operates a syndromic surveillance system that monitors medical records at more than 450 non-combat Military Treatment Facilities (MTF) worldwide. The Electronic Surveillance System for Early Notification of Community-based Epidemics (ESSENCE) uses both temporal and spatial algorithms to detect disease outbreaks. This study focuses on spatial detection and attempts to improve the effectiveness of the ESSENCE implementation of the spatial scan statistic by increasing the spatial resolution of incidence data from zip codes to street address level.
Methods
Influenza-Like Illness (ILI) was used as a test syndrome to develop methods to improve the spatial accuracy of detected alerts. Simulated incident clusters of various sizes were superimposed on real ILI incidents from the 2008/2009 influenza season. Clusters were detected using the spatial scan statistic and their displacement from simulated loci was measured. Detected cluster size distributions were also evaluated for compliance with simulated cluster sizes.
Results
Relative to the ESSENCE zip code based method, clusters detected using street level incidents were displaced on average 65% less for 2 and 5 mile radius clusters and 31% less for 10 mile radius clusters. Detected cluster size distributions for the street address method were quasi normal and sizes tended to slightly exceed simulated radii. ESSENCE methods yielded fragmented distributions and had high rates of zero radius and oversized clusters.
Conclusions
Spatial detection accuracy improved notably with regard to both location and size when incidents were geocoded to street addresses rather than zip code centroids. Since street address geocoding success rates were only 73.5%, zip codes were still used for more than one quarter of ILI cases. Thus, further advances in spatial detection accuracy are dependant on systematic improvements in the collection of individual address information.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science
Reference14 articles.
1. Olson KL, Grannis SJ, Mandl KD: Privacy protection versus cluster detection in spatial epidemiology. Am J Pub Health. 2006, 96: 11-10.2105/AJPH.2005.069526.
2. Ozonoff A, Jeffery C, Manjourides J, White LF, Pagano M: Effect of spatial resolution on cluster detection: a simulation study. Int J Health Geogr. 2007, 6: 52-10.1186/1476-072X-6-52.
3. Grubesic TH, Matisziw TC: On the use of ZIP codes and ZIP code tabulation areas (ZCTAs) for the spatial analysis of epidemiological data. Int J Health Geogr. 2006, 5: 58-10.1186/1476-072X-5-58.
4. Kulldorff M, Information Management Services, Inc: SaTScan™ V7.0: Software for the spatial and space-time scan statistics. 2006, http://www.satscan.org
5. Kulldorff M: A spatial scan statistic. Commun Stat Theory Methods. 1997, 26: 1481-1496. 10.1080/03610929708831995.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献