Correction: Using participatory design to develop (public) health decision support systems through GIS

Author:

Driedger S Michelle,Kothari Anita,Morrison Jason,Sawada Michael,Crighton Eric J,Graham Ian D

Abstract

Abstract Background Organizations that collect substantial data for decision-making purposes are often characterized as being 'data rich' but 'information poor'. Maps and mapping tools can be very useful for research transfer in converting locally collected data into information. Challenges involved in incorporating GIS applications into the decision-making process within the non-profit (public) health sector include a lack of financial resources for software acquisition and training for non-specialists to use such tools. This on-going project has two primary phases. This paper critically reflects on Phase 1: the participatory design (PD) process of developing a collaborative web-based GIS tool. Methods A case study design is being used whereby the case is defined as the data analyst and manager dyad (a two person team) in selected Ontario Early Year Centres (OEYCs). Multiple cases are used to support the reliability of findings. With nine producer/user pair participants, the goal in Phase 1 was to identify barriers to map production, and through the participatory design process, develop a web-based GIS tool suited for data analysts and their managers. This study has been guided by the Ottawa Model of Research Use (OMRU) conceptual framework. Results Due to wide variations in OEYC structures, only some data analysts used mapping software and there was no consistency or standardization in the software being used. Consequently, very little sharing of maps and data occurred among data analysts. Using PD, this project developed a web-based mapping tool (EYEMAP) that was easy to use, protected proprietary data, and permit limited and controlled sharing between participants. By providing data analysts with training on its use, the project also ensured that data analysts would not break cartographic conventions (e.g. using a chloropleth map for count data). Interoperability was built into the web-based solution; that is, EYEMAP can read many different standard mapping file formats (e.g. ESRI, MapInfo, CSV). Discussion Based on the evaluation of Phase 1, the PD process has served both as a facilitator and a barrier. In terms of successes, the PD process identified two key components that are important to users: increased data/map sharing functionality and interoperability. Some of the challenges affected developers and users; both individually and as a collective. From a development perspective, this project experienced difficulties in obtaining personnel skilled in web application development and GIS. For users, some data sharing barriers are beyond what a technological tool can address (e.g. third party data). Lastly, the PD process occurs in real time; both a strength and a limitation. Programmatic changes at the provincial level and staff turnover at the organizational level made it difficult to maintain buy-in as participants changed over time. The impacts of these successes and challenges will be evaluated more concretely at the end of Phase 2. Conclusion PD approaches, by their very nature, encourage buy-in to the development process, better addresses user-needs, and creates a sense of user-investment and ownership.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

Reference58 articles.

1. CWHPIN: A framework for evaluating the utilization of health information products. 2000, Hamilton, ON: Central West Health Planning Information Network

2. Agency for Health Research and Quality: Translating Research into Practice (TRIP)-II. 2001, Washington, DC: Agency for Health Research and Quality

3. Agency for Health Care Policy and Research (AHCPR): Information dissemination to health care practitioners and policymakers, Annotated Bibliography. Silver Spring: MD: Agency for Healthy Care Policy and Research (AHCPR)

4. Lavis J, Posada F, Haines A, Osei E: Use of research to inform public policymaking. Lancet. 2004, 364: 1649-1657. 10.1016/S0140-6736(04)17317-0.

5. Davis P, Howden-Chapman P: Translating research findings into health policy. Social Science & Medicine. 1996, 43: 865-872. 10.1016/0277-9536(96)00130-X.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3