Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging

Author:

Goovaerts Pierre

Abstract

Abstract Background Cancer mortality maps are used by public health officials to identify areas of excess and to guide surveillance and control activities. Quality of decision-making thus relies on an accurate quantification of risks from observed rates which can be very unreliable when computed from sparsely populated geographical units or recorded for minority populations. This paper presents a geostatistical methodology that accounts for spatially varying population sizes and spatial patterns in the processing of cancer mortality data. Simulation studies are conducted to compare the performances of Poisson kriging to a few simple smoothers (i.e. population-weighted estimators and empirical Bayes smoothers) under different scenarios for the disease frequency, the population size, and the spatial pattern of risk. A public-domain executable with example datasets is provided. Results The analysis of age-adjusted mortality rates for breast and cervix cancers illustrated some key features of commonly used smoothing techniques. Because of the small weight assigned to the rate observed over the entity being smoothed (kernel weight), the population-weighted average leads to risk maps that show little variability. Other techniques assign larger and similar kernel weights but they use a different piece of auxiliary information in the prediction: global or local means for global or local empirical Bayes smoothers, and spatial combination of surrounding rates for the geostatistical estimator. Simulation studies indicated that Poisson kriging outperforms other approaches for most scenarios, with a clear benefit when the risk values are spatially correlated. Global empirical Bayes smoothers provide more accurate predictions under the least frequent scenario of spatially random risk. Conclusion The approach presented in this paper enables researchers to incorporate the pattern of spatial dependence of mortality rates into the mapping of risk values and the quantification of the associated uncertainty, while being easier to implement than a full Bayesian model. The availability of a public-domain executable makes the geostatistical analysis of health data, and its comparison to traditional smoothers, more accessible to common users. In future papers this methodology will be generalized to the simulation of the spatial distribution of risk values and the propagation of the uncertainty attached to predicted risks in local cluster analysis.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3