Author:
Weisent Jennifer,Rohrbach Barton,Dunn John R,Odoi Agricola
Abstract
Abstract
Background
Socioeconomic factors play a complex role in determining the risk of campylobacteriosis. Understanding the spatial interplay between these factors and disease risk can guide disease control programs. Historically, Poisson and negative binomial models have been used to investigate determinants of geographic disparities in risk. Spatial regression models, which allow modeling of spatial effects, have been used to improve these modeling efforts. Geographically weighted regression (GWR) takes this a step further by estimating local regression coefficients, thereby allowing estimations of associations that vary in space. These recent approaches increase our understanding of how geography influences the associations between determinants and disease. Therefore the objectives of this study were to: (i) identify socioeconomic determinants of the geographic disparities of campylobacteriosis risk (ii) investigate if regression coefficients for the associations between socioeconomic factors and campylobacteriosis risk demonstrate spatial variability and (iii) compare the performance of four modeling approaches: negative binomial, spatial lag, global and local Poisson GWR.
Methods
Negative binomial, spatial lag, global and local Poisson GWR modeling techniques were used to investigate associations between socioeconomic factors and geographic disparities in campylobacteriosis risk. The best fitting models were identified and compared.
Results
Two competing four variable models (Models 1 & 2) were identified. Significant variables included race, unemployment rate, education attainment, urbanicity, and divorce rate. Local Poisson GWR had the best fit and showed evidence of spatially varying regression coefficients.
Conclusions
The international significance of this work is that it highlights the inadequacy of global regression strategies that estimate one parameter per independent variable, and therefore mask the true relationships between dependent and independent variables. Since local GWR estimate a regression coefficient for each location, it reveals the geographic differences in the associations. This implies that a factor may be an important determinant in some locations and not others. Incorporating this into health planning ensures that a needs-based, rather than a “one-size-fits-all”, approach is used. Thus, adding local GWR to the epidemiologists’ toolbox would allow them to assess how the impacts of different determinants vary by geography. This knowledge is critical for resource allocation in disease control programs.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science
Reference42 articles.
1. Allos BM, Taylor DN: Campylobacter Infections. Bacterial Infections of Humans, Epidemiology and Control. Edited by: Evans AS, Brachman PS. 1998, New York: Plenum Medical Book Company, 169-190. Third
2. Altekruse SF, Swerdlow DL: Campylobacter jejuni and Related organisms. Foodborne Diseases. Edited by: Cliver DO, Riemann HP. 2002, Boston: Academic Press, 103-112. Second
3. Dahoo I, Martin W, Stryhn H: Veterinary Epidemiologic Research. 2003, Charlottetown, PEI: AVC Inc.
4. Jepsen MR, Simonsen J, Ethelberg S: Spatio-temporal cluster analysis of the incidence of Campylobacter cases and patients with general diarrhea in a Danish county, 1995–2004. Int J Health Geogr. 2009, 8: 11-10.1186/1476-072X-8-11.
5. Hearnden M, Skelly C, Eyles R, Weinstein P: The regionality of campylobacteriosis seasonality in New Zealand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH. 2003, 13 (4): 337-348. 10.1080/09603120310001616128.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献